
Single Photon and Entangled Photon Light Sources

towards Quantum Sensing with Optical Resonators

Callum Huw Jones

Supervisors:

Professor Frank Vollmer
Professor Jolly Xavier P

Submitted by Callum Huw Jones to the

University of Exeter as a thesis for the degree of

Doctor of Philosophy in Physics,

September 2023.

This thesis is available for Library use on the understanding that it is copyright material

and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and

that any material that has previously been submitted and approved for the award of a de-

gree by this or any other University has been acknowledged.

1



Abstract

Quantum optical sensors exploiting properties such as entanglement offer the potential to make en-

hanced measurements of physical parameters with a higher precision per photon used than achiev-

able with coherent states of light. This thesis is on building sources of single photons and entangled

photon pairs, towards developing quantum optical sensors using whispering gallery mode (WGM)

resonators. These optical interferometers are used as highly sensitive optical sensors, including

as biosensors which can detect single molecules when combined with localised surface plasmon

resonances. Therefore, developing WGM sensors which use quantum optical states of light could

enable measurements on biological samples and even single molecules with higher precision using

fewer photons.

This thesis has three parts. First, we discuss some motivations for quantum sensing schemes

using WGM resonators, and compare with previous quantum biosensing experiments. Theoretical

modelling results are shown for WGM optical resonators coupled to one arm of a Mach-Zehnder

interferometer (MZI). This setup is predicted to produce an interesting double resonance dip when

an indistinguishable photon pair is incident on the two input ports; a variation on the behaviour of

N00N states in an MZI but now also with an optical resonance. Using a computational model, an

example of a WGM measurement scheme is shown that can achieve a factor of two enhancement

in signal-to-noise ratio (SNR) by using entangled photon pairs.

In the second part we discuss single photon emitters in hexagonal boron nitride (hBN). Atomic

vacancy defects in hBN have been demonstrated as room temperature single photon sources. These

single photon emitters are characterised with a view to sensing applications and the fluorescence

blinking behaviour is studied. The intensity stability of the single photon emission is measured

using the time-dependent Mandel Q parameter. Although these sources can produce nonclassical

states of light, it was found that a source of entangled photons would be more versatile for sensing

experiments.

The final part is on building a source of entangled photon pairs using the spontaneous para-

metric down-conversion (SPDC) nonlinear optical process in a periodically-poled KTP crystal

(PPKTP). Polarisation entangled states are generated using a PPKTP Sagnac loop setup, and char-

acterised using quantum state tomography and Hong-Ou-Mandel (HOM) interference. We show

an example of this source being applied to a refractive index sensor by using HOM interference

of photon pairs coupled to a tapered optical fibre sensor. Tapered fibres can provide a means to

couple entangled photon pairs to WGM resonators, and to close the thesis we discuss the potential

for realising the experiment investigated in the theory chapter: using entangled photon pairs for

quantum optical sensing with WGM sensors. The main challenge is achieving narrow bandwidth

and wavelength-tuneable entangled photon pairs, however using cavity-enhanced down conver-

sion sources this is possible in future work.
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1 Introduction

Optical measurements are key to probing natural phenomena across practically all ar-

eas of physical and life sciences. The limitations of resolution, phase precision, intensity

noise etc. in such measurements are fundamentally determined by quantum mechanics,

specifically the description of light as photons: quantum optics. As research efforts turn

increasingly from fundamental studies of quantum mechanics to applications in quantum

technologies, one of the main areas is developing measurement techniques that push to-

wards the fundamental limits on precision. This area is known as quantum metrology or

quantum sensing.

Quantum sensing techniques use exotic states of light such as single photons, entan-

gled photon pairs, and squeezed light and associated measurement setups to achieve a pre-

cision advantage per photon over measurements using classical light. These techniques

are applied to a wide range of measurements. For this thesis I focus on applications to

biosensing: detecting and studying small molecules, proteins, viruses etc. which are rel-

evant to biological processes. Studying these objects individually is challenging since

they are much smaller than visible wavelengths of light. However, detection at the single

molecule level is possible and essential, for example: in developing ultra-sensitive mea-

surements for disease biomarkers, and in fundamental studies into molecular processes

which have heterogeneity that is hidden in ensemble measurements.

One method of single molecule sensing uses whispering gallery mode (WGM) optical

resonators combined with optoplasmonic enhancements. These sensors enable label-free

detection of small molecules and direct detection of the function of individual enzymes.

Quantum sensing techniques have not yet been introduced to these sensors, nor has any

quantum-enhanced biosensing experiment reached single molecule sensitivity to date.

This thesis aims to develop sources of single photon states and entangled photon pairs

required for quantum sensing experiments, and to investigate how we could improve on

the sensitivity of single molecule WGM sensors using such states in the future.

The following sections introduce the key topics and literature on quantum sensing,

WGM single molecule biosensors, and the state-of-the-art in combining quantum sensing

with biological measurements. This is followed by an outline of the thesis and a summary

of our research approach.

1.1 Quantum sensing

Optical phase measurements using classical light are limited in their precision by the

shot-noise limit. This is the noise introduced due to the photon number distribution of

14



the light being used to measure the phase. Classical light is described by the coherent

state and its photon number distribution (measured by counting photons over some time

interval) is the Poisson distribution [1].

The derivation of limits to measurement precision uses estimation theory [2, 3, 4]. We

need the error in a parameter φ in the case of a general measurement on a quantum system

using an N-partite probe state (i.e. an N-photon state in an optical measurement), denoted

∆φ . This measurement can be repeated to reduce the error; let it be repeated M times. For

a separable probe state (i.e. not in an entangled state) the relevant limit is, up to a constant

factor k ∼ 1 [5]:

∆φ ≥ k√
M

(
1√
N

)
. (1)

This is the shot-noise limit (SNL) which ultimately limits measurements using classical

probe states. The same result is obtained from the Central Limit Theorem by combining

N independent Gaussian distributed errors across M independent measurements [6]. If

instead the probe state is allowed to be entangled the lower bound becomes, again up to a

constant factor k ∼ 1 [5]:

∆φ ≥ k√
M

(
1
N

)
. (2)

The scaling of error with 1/N is the Heisenberg limit and represents the fundamental

limit to the error in a general measurement on a quantum system using an N-partite probe

state: a factor of
√

N below the SNL. In quantum sensing the aim is to achieve a lower

measurement error per photon used than the SNL. This is done by choosing suitable N-

photon input states and measurement schemes.

Quantum sensing experiments can be grouped into two broad approaches which are

analogous to approaches in quantum optical computing: photon counting experiments

and continuous variables. These approaches generally need different experimental setups

and technologies for photon detection. Photon counting experiments use quantum optical

states with few photons such as entangled states or single photons, which are detected as

discrete signals on single photon detectors or photon number resolving detectors. Con-

tinuous variables approaches generally use higher power quantum optical states (such as

Gaussian states) which are detected with a continuous photocurrent signal, often using

homodyne or heterodyne detection methods.

The main approach to continuous variables quantum sensing to overcome the SNL is

to use squeezed light [7]. While coherent states have equal uncertainties in field quadra-

tures (or intensity and phase), the uncertainties in squeezed states are redistributed such

that one quadrature is below shot noise and the other is above [8, 9]. Squeezed states

are typically generated in nonlinear optical interactions [10, 11]. By using squeezing in

intensity, for example, the error in a measurement of optical intensity can be made below
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the SNL.

Caves first proposed a phase measurement in the Mach-Zehnder interferometer (MZI)

which can beat the SNL [12]. This method uses a squeezed vacuum field as one of the

input states to the interferometer, and a coherent state at the other input. This is the prin-

ciple behind the advanced LIGO (Laser Interferometer Gravitational wave Observatory)

experiment, which uses squeezed light in an interferometer to enhance its sensitivity to

strain in the interferometer arms by 2.3 dB beyond the SNL [13].

Using photon counting experiments, another approach to quantum sensing is to use

entangled photon states. For example, in the MZI the N00N state is in principle capable

of reaching the Heisenberg limit. This state is the superposition of N photons in each

arm of the interferometer [14]. Sub-shot noise phase measurements using N00N states

have been made with N = 4 photons [15, 16]. Making large N00N states however is very

challenging and generally involves using many photons to post-selectively detect a few

photons in the desired N00N state [14].

Multiple phase estimation schemes have achieved Heisenberg scaling uncertainty.

Daryanoosh et al. have made a phase measurement with a variance within 4% of the

absolute Heisenberg limit [17]. Higgins et al. have shown that an entangled probe state is

not necessarily required for Heisenberg scaling uncertainty, using heralded single photon

probes and adaptive measurement techniques [18].

To beat the SNL while accounting for all intensity passing through the phase element

in the photon resources N requires a system with high quantum efficiency. Slussarenko

et al. demonstrated this for the first time using an N = 2 N00N state [19]. This was

made possible by using high efficiency superconducting nanowire single photon detec-

tors, resulting in a total intensity transmission coefficient - including detector efficiency -

of η = 0.8 in each interferometer arm.

Overall, optical measurements with errors below the SNL can be made using probe

states such as heralded single photons, entangled photon states, and squeezed states. Op-

tical measurements have even been made very close to the absolute Heisenberg limit on

phase precision. However, it is important to note that the comparative SNL depends on

how the photon number in the measurement is counted. Making measurements which

are below the SNL while taking all the photons used in the measurement into account is

challenging due to photon losses.

When talking about practical quantum sensing advantages it is important to ask whether

a better precision could be achieved by increasing the optical power used in a comparable

16



classical measurement. Increasing the optical power for a laser source will typically be

far easier than for a source of single or entangled photons which will generally provide

significantly less than MHz rates of photons. Squeezed light can be used with µW-mW

optical power [20] but will still typically be more limited in power than classical light

sources. Quantum sensing finds applications in those situations where the optical power

used in a measurement is limited, for example because increasing the power would intro-

duce new noise sources or cause damage to the sample under study. The LIGO experiment

is an excellent example of a practical advantage in quantum sensing. This was possible

because the experiment had been engineered to eliminate other noise sources - resulting

in a measurement limited by shot noise at the optimum optical power - and this noise

could only be reduced further by introducing squeezed light.

1.2 WGM single molecule biosensors

WGM resonators such as silica microspheres are a versatile platform for high preci-

sion sensors 1. These are spherical optical cavities (typically fabricated by melting optical

fibre tips with a high power IR laser) which support optical resonances with an evanescent

field extending into the surrounding medium [21, 22]. Light can be coupled to the res-

onator via frustrated total internal reflection from a prism, or by bringing the evanescent

field around a tapered optical fibre close to the sphere.

Changes in the environment of the sensor such as temperature or refractive index

changes are transduced into changes in the WGM resonance wavelength, resonance width

or mode splitting, see Figure 1(b). The ultra-high Q factors achievable in these resonators

(typically ∼ 106−7 [25]) result in narrow resonances which can be tracked with high pre-

cision - on the order of fm shifts [21] - allowing very small changes in the sensor envi-

ronment to be detected. Applications include sensing temperature, pressure, electric and

magnetic fields, and biosensing [22].

The sensitivity of WGM sensors can be enhanced by combining them with plasmon-

ics. Plasmonic biosensing is a field in its own right; shifts in surface plasmon resonances

can detect changes in the optical environment with high sensitivity due to the mode vol-

ume confinement and E-field enhancement provided near plasmonic nanoparticles (com-

monly gold nanoparticles of various geometries) [25]. In plasmonic nanostructures Q fac-

tors are significantly lower (∼ 10−100 [25]) than expected for WGM resonators, however

optical modes are confined to nanoscale volumes. A combination of WGM and plasmonic

techniques as hybrid optoplasmonic sensors [26, 27, 28] have enabled the observation of

1The name originates from the whispering gallery in St Paul’s Cathedral, London, which supports acous-
tic resonances around the perimeter of the circular gallery. This phenomenon can also be heard in many
other buildings around the world.
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Figure 1: Examples of WGM single molecule biosensing. (a) A prism-
coupled WGM optoplasmonic sensing setup showing detection of cysteine
binding to gold nanorods. (b) Schematic of WGM resonance spectrum show-
ing shifts in the resonance wavelength and linewidth which are read off as the
sensing signal. Adapted from Vincent et al. [23] under CC-BY 4.0 license.
(c) Schematic of enzyme turnover bound to a gold nanorod and studied on
a WGM sensor. (d) Examples of WGM resonance shift signals. Top: step
due to enzyme binding to the sensor, bottom: spikes due to enzyme turnover
events. Adapted from Subramanian et al. [24] under CC-BY 4.0 license.
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signals due to single molecules interacting with plasmonic nanoparticles [29].

Optoplasmonic WGM sensors typically use gold nanorods attached to WGM res-

onators, and the nanorod surface can be functionalised with receptor molecules to allow

specific detection of a target molecule. These sensors have been used to detect small

molecules and proteins binding and undergoing chemical reactions [29, 23], the binding

of enzymes and turnover events of individual enzymes [30, 24, 31], and the detection of

single Zn2+ and Hg2+ ions [32].

In terms of improvements to the capabilities of WGM single molecule sensors, signals

from small molecules are often close to the noise level [29, 23]. Increasing the signal-to-

noise ratio (SNR) could enable more confident detection of smaller signals, increasing the

number of detections in an experiment and improving statistics, but could also reveal more

detail in current signals. For example, in experiments detecting conformational changes

of enzymes there can be information in the number and duration of signal spikes during

a detection event which can be obscured by noise [24, 33]. The magnitude of the single

molecule signal is proportional to the polarisability change [25], therefore a higher SNR

could also enable the detection of even smaller conformational changes of biomolecules

which have smaller associated polarisability changes. The detection limits of bare WGM

microsphere sensors [34] were improved dramatically with the introduction of plasmonic

enhancements using plasmonic nanoparticles [28], but there are still noise sources which

could be mitigated (e.g. laser noise, thermorefractive noise) in order to improve on the

SNR of these measurements, as discussed by Subramanian [33].

1.3 State-of-the-art in quantum-enhanced biosensing

In the past decade, there have been many demonstrations of biosensing and bioimag-

ing experiments using quantum sensing to achieve enhancements in SNR or spatial reso-

lution, and there are now a number of reviews in this area [35, 36, 37]. As described in the

quantum sensing section, quantum optical sensing schemes can offer practical advantages

over equivalent classical measurements when the measurement is shot-noise-limited and

when there is a limit on the optical power which can be used. In the case of biosensing a

strong argument for using quantum optical enhancements is that many biological samples

are prone to photodamage when exposed to high optical power and/or long measurements

[38, 39]. Therefore, quantum sensing strategies can improve the SNR of biosensing exper-

iments beyond what would be possible using classical light due to the two constraints of

shot noise and photodamage (as shown schematically in Figure 2). In principle, the SNR

is bounded by the Heisenberg limit at the maximum optical power before reaching the

photodamage threshold, although that is far beyond current experimental capabilities: we

can see this by comparing typical photodamage thresholds observed for focused beams of

19



Figure 2: Schematic of SNR against photon number used per measurement
(proportional to optical power) in a general biosensing measurement. This is
to show how the SNR can be bounded by the SNL and photodamage thresh-
old (red area), so that measurements with classical light are constrained to
the white region. Quantum sensing experiments have the potential to in-
crease the maximum SNR into the blue region, and in principle are instead
bounded by the Heisenberg limit and photodamage thresholds.

∼ 100 mW [38, 39] to the low photon count rates used in quantum sensing measurements

achieving Heisenberg-scaling uncertainties [17, 18].

Quantum-enhanced biosensing experiments include entangled photon pairs used to

detect protein concentration in MZIs [40] and plasmonic sensors [41], entangled pho-

tons used with tapered optical fibre sensors [42, 43], and many imaging techniques using

entangled photon pairs [44, 36]. Squeezed light has been used in particle tracking exper-

iments [45, 46], enhanced sensitivity in plasmonic sensors [47, 48], magnetometry using

WGM microresonators [49], Raman microscopy [20, 50], and other microscopy tech-

niques such as dark field [51] and stimulated Brillouin microscopy [52]. Although this

may not be a complete list, we can see that the majority of experiments in this area are

using squeezed light in order to reach optical powers which are comparable to the power

required for classical biosensors. As an example of this, Casacio et al. [20] demonstrate a

SNR enhancement in Raman microscopy at the point where shot noise and photodamage

constrain the classical SNR (as shown in Figure 2). By using squeezed light, they demon-

strate a 13% improvement in SNR which could not be achieved by increasing the power

of a classical probe due to the photodamage threshold in the yeast cells being studied.

Although a large range of biosensing experiments have been adapted to use quantum
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sensing methods, these methods have not yet been applied to single molecule experiments

such as single molecule detection using WGM optoplasmonic sensors. So far, single

molecule detection of bovine serum albumin (BSA) protein molecules has reached the

SNL [53]. That experiment used dark field illumination with classical light and hetero-

dyne detection in a tapered optical fibre sensor. As discussed in Ref. [53], using quantum

correlated photons as probe states in this experiment could enable sub-shot noise preci-

sion in the future.

Due to the ability of WGM optoplasmonic sensors to detect signals from small molecules

and conformational changes in individual enzymes, there is a great motivation to push to-

wards the noise limits of these sensors and to investigate the potential for enhancing their

sensitivity using quantum optics. The current limits to WGM single molecule sensors and

the potential benefits of improving their SNR were summarised at the end of the previ-

ous section. From Ref. [49], we can see that sensing enhancements are possible using

squeezed light in WGM microresonator magnetometers using acoustic resonances; sim-

ilar quantum optics routes to enhanced precision measurements with WGM biosensors

could enable new biosening and even single molecule detection capabilities in the future.

1.4 Research approach and thesis outline

The focus of this thesis is to build and characterise sources of quantum optical states

suitable for quantum biosensing experiments, and to investigate the potential for sensitiv-

ity enhancements in WGM biosensors using quantum sensing schemes. Two approaches

were chosen to developing light sources with quantum correlations: the first was to use

bright room temperature single photon emitters in hexagonal boron nitride (hBN), with

the aim to build up entangled photon pairs for sensing by two-photon interference; the

second approach was to generate entangled photon pairs directly using a nonlinear optical

process in the second order nonlinear crystal periodically-poled potassium titanyl phos-

phate (PPKTP). Entangled photon pairs would enable proof-of-principle quantum sensing

schemes in the photon counting regime.

One of the challenges in this project was to develop the tools for making quantum

optical measurements in our laboratory, based on setups built and designed by Professor

Jolly Xavier. We aimed to build up from single photon sources to entangled photon pairs

to develop a set of quantum optics experiments which would enable us to study quantum

biosensing. This effort is motivated by the ultimate aim of combining quantum sensing

with WGM biosensors and investigating how to make quantum-enhanced measurements

at the single molecule level.

Throughout the project, the theory of quantum optics with WGM resonators was being
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Figure 3: Thesis outline.

investigated to find potential quantum sensing schemes using entangled photon pairs cou-

pled to WGM resonators. The chosen sensing scheme for the theoretical study was a MZI

with an entangled photon input state and a WGM resonator coupled to one interferome-

ter arm by tapered fibre coupling. This is similar to existing quantum sensing schemes

using the MZI [40, 19]. However, adding an optical resonance as the phase shift in the

interferometer results in a far more complex behaviour as an entangled photon input state

modifies the classical WGM transmission spectrum depending on the coupling conditions.

The structure of this thesis is shown in Figure 3. Chapter 2 introduces the necessary

quantum optics theory and a model for WGM resonators within quantum optics. This

model is used to predict the signal spectrum for a MZI with a WGM resonator in one

arm, and with entangled photon pairs as the input state. Finally the SNR enhancement is

investigated using a computational model to compare the classical and entangled photon

WGM spectra.

Chapter 3 describes the development and characterisation of single photon sources in

hBN, including g(2) measurements and Hong-Ou-Mandel (HOM) interference, which
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could not be observed due to the spectral diffusion of these single photon emitters.

Chapter 4 continues with a study of the intensity stability of hBN single photon emitters

and its relevance to sensing applications. Since it was not possible to build entangled

photon pairs by HOM interference, we turn to sensing applications where the low photon

number variance of single photon states could potentially be used. Fluorescence blink-

ing and bleaching are investigated, and the photon number variance in the emission from

these sources is studied over a range of timescales using the time-dependent Mandel Q

parameter. Part of this chapter was based on a publication (Ref. [54]): the supplementary

information is attached in Appendix A.

Chapter 5 introduces the nonlinear optical process spontaneous parametric down-conversion

(SPDC) for producing entangled photon pairs. Then I describe the building and charac-

terisation of a polarisation entangled photon pair source based on a PPKTP crystal in a

Sagnac loop. Chapter 5 finishes with results on HOM interference using the polarisation

entangled photon pairs.

Chapter 6 looks towards quantum biosensing experiments using our PPKTP entangled

photon pair source. Tapered optical fibres are introduced as sensors, and HOM mea-

surements are shown with a tapered fibre before the HOM beamsplitter. The HOM dip

position is sensitive to the refractive index around the tapered fibre and I show results on

sensing refractive index changes using entangled photon pairs. Finally I show how ta-

pered optical fibres can couple photons to WGM resonators and discuss the experimental

challenges in realising the WGM coupled MZI with entangled photon pairs, as shown

theoretically in Chapter 2.

Chapter 7 concludes the thesis and gives an outlook on future work towards quantum-

enhancements in biosensing with tapered fibres and WGM sensors.
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2 Theory of WGM Sensing with Entangled Photon Pairs

2.1 Introduction

Quantum sensing schemes which measure a linear phase change in an interferometer

are very well discussed in the literature [15, 40, 19]. In this work, we are interested in

quantum sensing schemes which can be applied to a WGM optical resonator, in order

to monitor shifts in ultra-narrow (∼100 MHz linewidth) resonances and detect signals

such as single molecule binding events. Quantum sensing schemes involving optical res-

onances are less common in the literature. We need a theoretical model of coupling en-

tangled photon pairs to a WGM resonator to motivate and inform future experiments. For

example, what sensitivity enhancements can be gained by using entangled photon pairs

and in what sensing scheme? What are the optimum coupling conditions to the WGM

resonator? What are the critical experimental parameters for developing a source of en-

tangled photons as the input state?

In this chapter I will discuss models of coupling light to a single WGM resonance in

both classical and quantum optics regimes. The chapter begins by introducing the con-

cepts from quantum optics that will be used in the following sections.

A widely used result in quantum sensing schemes is the N-fold enhancement of the

phase shift in a Mach-Zehnder interferometer (MZI) when the state inside the interferom-

eter is an N-photon path entangled state [15]. Using an existing quantum optics model for

WGM coupling I will present some predictions for the behaviour of a WGM resonator in

one arm of a MZI, with an entangled photon pair at the input. The resonance spectrum

of the output coincidence count rate has a double dip feature and points with enhanced

sensitivity to shifts in the resonance wavelength.

Finally, I will present a computational study of the noise in a measurement of the

WGM resonance position, using a Monte Carlo approach to generate random noise. The

SNR will be compared between sensing schemes using classical light and entangled pho-

ton pairs. Under certain coupling conditions and when the sensor is operated in the shot-

noise-limited regime, it is possible to see approximately a factor of two enhancement in

the SNR using entangled photon pairs compared to a classical transmission measurement.

This investigation is intended to demonstrate one potential approach to quantum-enhanced

sensing in WGM resonators and give some insight into the challenges in realising it ex-

perimentally.
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2.2 Quantum Optics Concepts

2.2.1 Representing quantum states of light

In quantum optics the electromagnetic field is quantised and can be treated as a set of

harmonic oscillators for each momentum k and polarisation s mode. Photons with mo-

mentum k and polarisation s are excited states of these harmonic oscillators. This leads to

the concept of the photon number state |n⟩, which is a single mode of the electromagnetic

field in the nth excited state, i.e. with n photons. The lowest energy state of the electro-

magnetic field is then the n = 0 number state; the vacuum state |0⟩.

This section follows ‘Optical Coherence and Quantum Optics’ by Mandel and Wolf

[55]. We can describe general states of the electromagnetic field using a set of annihilation

and creation operators: âks and â†
ks. The creation operator acts on a number state to add

one photon to the field and the annihilation operator removes one photon in the following

way:

âks|n⟩ks =
√

n |n−1⟩ks

â†
ks|n⟩ks =

√
n+1 |n+1⟩ks.

(3)

The annihilation and creation operators satisfy the following bosonic commutation rela-

tions:

[âks, â
†
k′s′] = δ

3
kk′δss′

[âks, âk′s′] = 0

[â†
ks, â

†
k′s′] = 0.

(4)

The combination â†
ksâks is the number operator n̂ since the number states are eigenstates

of this operator with eigenvalues n:

â†
ksâks|n⟩ks = n |n⟩ks. (5)

The Hamiltonian of the free electromagnetic field is expressed in terms of the number

operator as:

Ĥ = ∑
k

∑
s
ℏω

[
â†

ksâks +
1
2

]
(6)

where each photon contributes an energy ℏω and the contribution ℏω/2 per mode is the

vacuum energy.

Now I will describe some states of light that will be useful for this thesis using this

formalism of creation and annihilation operators.

Single photon state. A single photon state is a single mode number state with exactly

one photon:

|1⟩ks = â†
ks|0⟩. (7)
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Ideally this state has zero variance in the photon number. However, for heralded single

photons from nonlinear interactions for example, in reality there is some contribution to

the state from the vacuum state and two or higher photon number states. At sufficiently

low average photon number, the higher photon number contributions are negligible and

these sources are good approximations to the single photon state.

Coherent state. Coherent states are eigenstates of the annihilation operator and behave

analogously to classical optical fields. In terms of creation operators, the coherent state

is:

|α⟩ks = exp
(
−|α|2

2

)
∞

∑
n=0

αn

n!
(â†

ks)
n|0⟩. (8)

The prefactor in this expression is a Poisson distribution: the photon number distribution

for the coherent state |α⟩ is a Poisson distribution with both mean and variance |α|2.

Photon pair state. A description for a pair of photons in separate modes 1, 2 (e.g. sepa-

rate spatial modes) with frequencies ω , ω ′ will be needed for describing entangled photon

pairs generated by a nonlinear optical process. A time-dependent representation of a pho-

ton pair with joint spectral amplitude φ(ω,ω ′) is:

|ψ(t)⟩=
(

δω

2π

)
∑
ω

∑
ω ′

φ(ω,ω ′)â†
1(ω)â†

2(ω
′)ei(ω−ω ′)t |0,0⟩1,2. (9)

The sums can be replaced by integrals by taking the limit δω → 0, with integration limits

(−∞,∞).

However, to simplify the calculations I will assume the two photons are in single

frequency modes at ω (i.e. monochromatic), so the following time-independent represen-

tation can be used:

|ψ(ω)⟩= â†
1(ω)â†

2(ω)|0,0⟩1,2. (10)

Although this gives no information on the spectrum and temporal distribution of the pho-

ton pair, it will be sufficient to demonstrate effects that depend on indistinguishable pho-

ton pairs.

2.2.2 Entangled states

Quantum mechanics allows solutions to the Schrödinger equation which are super-

position states, i.e. a given particle can be in a superposition of multiple states in some

degree of freedom. When this is extended to multiple particles, entangled states become

possible - states which describe the joint state of multiple particles in a superposition

which cannot be described completely in terms of each particle individually [56, 57].
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Entangled states have been introduced in the previous chapter as essential tools for

quantum sensing schemes. The entangled states I will consider here are non-separable

states of two photons, i.e. for some degree of freedom they cannot be expressed in the

form of a product state:

|ψentangled⟩ ̸= |Photon 1⟩|Photon 2⟩. (11)

The following are the two entangled states used in this thesis: polarisation and path entan-

gled states. Some different kinds of entangled photon states are reviewed by Kwiat [58].

Polarisation entangled state. A pair of photons in two spatial modes 1, 2, which are in

an entangled state in the polarisation degree of freedom (horizontal, H or vertical, V ), for

example:

|ψpolarisation⟩=
1√
2

(
â†

1H â†
2V + â†

1V â†
2H

)
|0,0⟩1,2

=
1√
2
(|H,V ⟩1,2 + |V,H⟩1,2) .

(12)

The notation |H⟩, |V ⟩ is used to represent one photon number states in the H or V polar-

isations. Note that this is one of the four Bell states: maximally entangled states of two

qubits.

Path entangled state. A pair of photons in an entangled state between two spatial modes

1, 2, such that either both photons are in mode 1 or mode 2:

|ψpath⟩=
1
2

(
â†2

1 + â†2
2

)
|0,0⟩1,2

=
1√
2
(|2,0⟩1,2 + |0,2⟩1,2) .

(13)

Entangled states of this form are often called N00N states for the general case in which

there is a superposition of N photons in each mode [14]. This is the two-photon N00N

state 2.

A useful representation for characterising entangled states in experiment is in terms

of the density matrix ρ̂ , which for a pure state is the outer product of the state vector |ψ⟩:

ρ̂ = |ψ⟩⟨ψ|. (14)

The diagonal elements of the density matrix are real and correspond to the probabilities

of observing each possible state in the chosen basis. Off-diagonal elements are in general

complex and represent correlations: entangled states will have off-diagonal elements that

are non-zero.

2These states are named N00N after the general N-photon state: |N0⟩+ |0N⟩.
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Figure 4: Real and imaginary parts of the density matrix ρ̂ for the polari-
sation entangled state |ψpolarisation⟩ in the main text.

The density matrix can be determined experimentally as described in Chapter 5. One

way to quantify the degree of entanglement of a state produced in experiment is to mea-

sure its density matrix ρ̂expt and find its Fidelity F with respect to the target entangled

state |ψtarget⟩:
F = ⟨ψtarget |ρ̂expt |ψtarget⟩. (15)

An example of the theoretical density matrix for the polarisation entangled state |ψpolarisation⟩
is shown in Figure 4.

2.2.3 HOM interference

The Hong-Ou-Mandel (HOM) effect is another essential tool in quantum optical sens-

ing. This effect is shown schematically in Figure 5. When indistinguishable photon

modes are combined simultaneously on a beamsplitter, interference between the two

modes causes both photons to exit via the same output mode [59]. Indistinguishability

here refers to the photons sharing the same spectral and polarisation modes, and having

zero time delay at the beamsplitter.

Using the photon pair description introduced above, we can take the input state to be:

|ψin⟩= â†
1â†

2|0,0⟩1,2. (16)

The beamsplitter transforms the input creation operators in the following way [57]:

â†
1 =

1√
2
(â†

3 + iâ†
4); â†

2 =
1√
2
(iâ†

3 + â†
4). (17)

Therefore the output state is given by substituting for the transformed creation operators
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Figure 5: Schematic of HOM interference between two indistinguishable
photons arriving simultaneously on a beamsplitter.

3:

|ψout⟩=
1
2
(â†

3 + iâ†
4)(iâ

†
3 + â†

4)|0,0⟩3,4

=
1
2
(iâ†2

3 + â†
3â†

4 − â†
4â†

3 + iâ†2
4 )|0,0⟩3,4

=
1
2
(iâ†2

3 + iâ†2
4 )|0,0⟩3,4

|ψout⟩=
i√
2
(|2,0⟩3,4 + |0,2⟩3,4).

(18)

The result is a path entangled state (the two-photon N00N) state. Note that the terms with

one photon in each output mode cancelled (this is possible because â†
3 and â†

4 commute).

Therefore, we would expect to measure no coincidence detections in the output modes

3, 4: this produces the so-called ‘HOM dip’ in the coincidence counts when the delay

between the two input photons is varied about zero.

This method for modelling beamsplitters in quantum optics will be used extensively

through this chapter to describe interferometers. In the next section I will show how HOM

interference is used in the MZI to make phase measurements with enhanced precision.

2.2.4 Quantum optics model of the MZI

The MZI can be used to make enhanced phase measurements using indistinguishable

pairs of photons at the input. This section briefly gives the quantum optical description of

an MZI with a linear phase shift introduced into one arm, shown schematically in Figure

6(a). This will be useful later for comparison to an MZI with a WGM resonator in one

arm. The input modes to the MZI are â1, â2, and we consider an indistinguishable photon

pair as the initial state:

|ψin⟩= â†
1â†

2|0,0⟩. (19)

3By transforming the operators and acting on a constant vacuum state, we are working in the Heisenberg

picture. Conversely in the Schrödinger picture the operators are constant and the state vector changes.
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Figure 6: Schematic of MZI in quantum optics. (a) MZI with mode ampli-
tudes labelled as described in the main text. A phase shift θ is introduced to
one interferometer arm. (b) Transmission as a function of phase difference θ

for: an entangled photon pair input state measuring the coincidence detec-
tions in both output modes (orange, corresponding to P1,1), and a coherent
input state measuring the transmitted intensity at one output mode (blue).

Operation of first beamsplitter transforming to modes â3, â4:

â†
1 =

1√
2
(â†

3 + iâ†
4); â†

2 =
1√
2
(iâ†

3 + â†
4). (20)

State after the first beamsplitter is a two-photon N00N state; the |1,1⟩ state destructively

interferes by the HOM effect:

|ψBS1⟩=
i
2
(â†2

3 + â†2
4 )|0,0⟩. (21)

The phase shift operator acts only on mode â4, introducing a θ phase difference be-

tween the two arms:

â†
5 = Û†

θ
â†

4Ûθ = â†
4eiθ . (22)

State after the phase shift, note that the phase shift is doubled for a two-photon N00N

state in the interferometer:

|ψθ ⟩=
i
2
(â†2

5 e2iθ + â†2
6 )|0,0⟩. (23)

Operation of the second beamsplitter transforming to output modes â7, â8:

â†
5 =

1√
2
(â†

7 + iâ†
8); â†

6 =
1√
2
(iâ†

7 + â†
8). (24)

State after the second beamsplitter (output state):

|ψBS2⟩=
(

i
4
(e2iθ −1)â†2

7 +
i
4
(1− e2iθ )â†2

8 − 1
2
(e2iθ +1)â†

7â†
8

)
|0,0⟩. (25)

After acting with the creation operators (note the factor
√

2 when the creation operator

acts twice):

|ψBS2⟩=
i
√

2
4

(e2iθ −1)|2,0⟩+ i
√

2
4

(1− e2iθ )|0,2⟩− 1
2
(e2iθ +1)|1,1⟩. (26)
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The probabilities of measuring both photons on the same detector (single count, P2,0,P0,2),

and one photon on each detector (coincidence count, P1,1) oscillate with twice the phase

shift θ :

P2,0 = P0,2 = |⟨2,0|ψBS2⟩|2 =
1
4
(1− cos2θ) (27)

P1,1 = |⟨1,1|ψBS2⟩|2 =
1
2
(1+ cos2θ). (28)

If a coherent state (e.g. a single laser mode) was used at the input to the MZI, the

output intensities would oscillate with θ , therefore the interference fringes using photon

pair inputs oscillate at twice the frequency compared to the classical case (as shown in

Figure 6(b)). This allows the phase to be measured with enhanced sensitivity at points on

the interference signal where the gradient is maximum. In the next section we will replace

the linear phase shift in one arm with a WGM resonator, which has a more complicated

behaviour introducing both losses and phase shift which depend on the detuning from

resonance.

2.3 Quantum Optics Model for WGM Sensing

2.3.1 Classical model for WGM resonator

First, let us describe the amplitude and phase change in a single optical mode coupled

to a WGM resonator using a classical model. The situation is shown in Figure 7. The

input and output mode labels are named anticipating the quantum optical model in the

next section. Parameters are: coupling reflection coefficient r, coupling transmission

coefficient κ , transmission amplitude per round trip α , phase accumulated per round trip

θ(ω), refractive index n, resonator radius R, and resonance frequency ω0. Following

the derivation in Refs. [60, 61], the input-output relation for the optical electric field

amplitude is:

Eout = Ein
√

ηeiΘ. (29)

Intensity transmission coefficient η :

η =
α2 + r2 −2rα cosθ

1−2rα cosθ + r2α2 . (30)

Phase of transmitted mode Θ:

Θ = π +θ + arctan
(

r sinθ

α − r cosθ

)
+ arctan

(
rα sinθ

1− rα cosθ

)
(31)

where θ(ω) is the phase accumulated per round trip:

θ(ω) =
2πRn

c
δω =

2πRn
c

(ω −ω0). (32)

Note that the coupling transmission coefficient κ does not appear in the expressions

above; they can all be written in terms of r using the relation |κ|2 + |r|2 = 1 which is re-

quired by energy conservation. An example of the WGM transmission spectrum is shown
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Figure 7: Diagram of a WGM resonator coupled to a waveguide. This
general model could describe any kind of WGM resonator such as a ring res-
onator, toroid, or sphere. The input and output mode amplitude operators
are shown as used in the quantum optics model for this system. The param-
eters are coupling reflection coefficient r, coupling transmission coefficient
κ , amplitude transmission per round trip α , and phase change per round
trip θ .

in Figure 8, with α = 0.9997 and varying the coupling reflection coefficient r. There are

three regimes for the coupling conditions: overcoupling (r <α), critical coupling (r =α),

and undercoupling (r > α). At critical coupling in an ideal resonator all the input power

is coupled to the resonator on resonance and the transmission is zero. Figure 8 shows the

linewidth increases going from under- to overcoupling.

As well as the transmission properties of the output mode from the resonator, we also

need to consider the effect of the resonator on the arrival time of coupled photons, since

this will be important for photon counting experiments. Photons coupled to the resonator

will be delayed by an interval depending on the number of round trips they make. We can

write down the probability of a photon making integer m round trips.

Amplitudes for m round trips:

m = 0 : râin

m = 1 : −κ
∗
καeiθ âin

m = 2 : −κ
∗
κα

2r∗e2iθ âin

m = 3 : −κ
∗
κα

3r∗2e3iθ âin

...

−|κ|2
(

αeiθ
)m

(r∗)m−1 âin.

(33)
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Figure 8: WGM resonances for varying coupling parameter r. The trans-
mission per round trip α is fixed at 0.9997 to produce a FWHM of ∼100 fm
typical for microsphere sensors. As the coupling parameter is varied from un-
dercoupling (r > α) to overcoupling (r < α), the WGM linewidth increases.

Expressing amplitudes as probabilities and using |r|2 + |κ|2 = 1:

Pm =

(
1−|r|2

|r|

)2

|αr|2m. (34)

Since α,r < 1, this is an exponential decay. The round trip time t0 relates the number

of round trips m to time delay t:

t = t0m =
2πRn

c
m. (35)

The probability density function for the time delay t is derived from Pm using Equation

35 but must be normalised. Let the normalisation factor be B.

P(t) = B|αr|(c/πnR)t (36)

Normalisation:

B
∫

∞

0
dt |αr|(c/πnR)t = 1 (37)

B
∫

∞

0
dt exp

(
ln|αr|(c/πnR)t

)
= 1 (38)

B
∫

∞

0
dt exp

( c
πnR

tln|αr|
)
= 1 (39)

B =− c
πnR

ln|αr|. (40)
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Figure 9: Distribution of photon delays induced by a WGM resonator under
different coupling conditions. The data were generated with pseudo-random
samples from the delay distribution P(t). As the coupling parameter is var-
ied from undercoupling (r > α) to overcoupling (r < α), the mean delay
decreases.

The normalised probability distribution for the photon delay time is:

P(t) =− c
πnR

ln|αr| · |αr|(c/πnR)t . (41)

Figure 9 shows this distribution plotted for α = 0.9997 and varying coupling con-

ditions r, from undercoupled to overcoupled. The delay is shortest in the overcoupling

regime, and mean delays are typically ∼ 1 ns for these parameters.

From the exponential decay distribution in Equation 34, we can derive some useful

properties of the WGM resonator in terms of α and r. The 1/e lifetime of the decay (the

cavity ring-down time) is τ:

τ =− t0
ln|αr|

=− 2πRn
c ln|αr|

. (42)

By equating this with the decay time calculated from the cavity linewidth we get a

relation between the linewidth ∆λ and the coupling parameters α , r (at resonance wave-

length λ0):

τ =
nλ 2

0
2πc∆λ

=− 2πRn
c ln|αr|

=⇒ ∆λ =−
λ 2

0 ln|αr|
4π2R

.

(43)
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This relation is important because it relates the coupling and loss parameters of the

resonator r and α to the resonance linewidth ∆λ , which is a more typical value to quote

for a WGM resonator. We can also relate these parameters to the Q-factor of the resonator

via Q = λ0/∆λ .

The free spectral range FSR (in units of frequency ν) is the reciprocal of the round

trip time:

FSRν =
1
t0

=
c

2πRn
. (44)

The linewidth in units of frequency is proportional to the reciprocal of the cavity ring-

down time τ:

∆ν =
1

2πτ
. (45)

Using these two relations, the WGM cavity finesse can also be expressed in terms of α

and r:

F =
FSRν

∆ν
=

2πτ

t0
=− 2π

ln|αr|
. (46)

2.3.2 Quantum optics model for WGM resonator with losses

Now, to describe coupling to the WGM resonator using a quantum optics approach

we need a relation between input and output field amplitudes expressed as annihilation

operators. Following the derivation in Alsing et al. [62], this is a little more complicated

than the classical derivation because now the losses that occur in the resonator have to be

included explicitly using noise operators.

The input-output relation from Ref. [62] is:

âout = t(ω)âin + F̂(ω) (47)

where the transmission amplitude t(ω) is:

t(ω) =

(
r−αeiθ

1− r∗αeiθ

)
(48)

and the noise operator F̂(ω) is:

F̂(ω) =−i|κ|2
√

Γ(ω)
∞

∑
n=0

(r∗)n
∫ (n+1)L

0
dz eiξ (ω)[(n+1)L−z]ŝ(z,ω). (49)

For real r, taking the modulus squared of t(ω) returns the classical intensity trans-

mission coefficient η . The noise operator is derived using Loudon’s beamsplitter model

for losses in quantum optics [63]. By considering a continuous series of beamsplitters

around the circumference of the resonator, photons are lost from the resonator with an
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attenuation constant Γ(ω) (per unit distance around the circumference). At the same

time, these beamsplitters couple photons into the resonator from the optical modes of the

environment. These modes have amplitudes ŝ(z,ω) at position z around the resonator cir-

cumference L = 2πR. The factor ξ (ω) = n(ω)(ω/c)+ iΓ(ω)/2 is the complex optical

propagation constant inside the resonator.

The expectation values of the noise amplitudes coupled into the resonator ŝ(z,ω) are:

⟨ŝ(z,ω)⟩= 0 (50)

⟨ŝ†(z,ω)ŝ(z′,ω ′)⟩= FN(ω)δ (z− z′)δ (ω −ω
′) (51)

where FN(ω) is the mean flux of noise photons entering the resonator mode from the en-

vironment at angular frequency ω . As discussed by Loudon [63], for a system in thermal

equilibrium with the environment FN ≪ 1.

The flux of noise photons coupled into the optical mode from the environment via

losses is typically negligibly small at optical frequencies. However, the noise operators

are essential for maintaining the correct commutation relations for the input and output

modes. The input and output annihilation operators must obey:

[âin(ω), â†
in(ω

′)] = δ (ω −ω
′) (52)

[âout(ω), â†
out(ω

′)] = δ (ω −ω
′). (53)

As shown in [62], the commutator for âout is only satisfied if the noise operators are

included in the input-output relation. We also have the following commutators for the

noise operators:

[ŝ(z,ω), ŝ†(z′,ω ′)] = δ (z− z′)δ (ω −ω
′) (54)

[âin(ω), ŝ(z′,ω ′)] = [âin(ω), ŝ†(z′,ω ′)] = 0. (55)

As an example of how this model behaves, we can take an input coherent state with

complex amplitude β and find the expectation of the output photon number at angular

frequency ω , N̂(ω), using the input-output relation.

âin|β ⟩= β |β ⟩; ⟨β |â†
in = β

∗⟨β | (56)

The number operator expectation value and input-output relation are:

⟨N̂(ω)⟩= ⟨β |â†
out(ω)âout(ω)|β ⟩ (57)

âout(ω) = t(ω)âin(ω)+ F̂(ω). (58)

Substituting for âout we get:

⟨N̂(ω)⟩= t∗(ω)t(ω)⟨β |â†
in(ω)âin(ω)|β ⟩+ t∗(ω)⟨β |â†

in(ω)F̂(ω)|β ⟩

+ t(ω)⟨β |F̂†(ω)âin(ω)|β ⟩+ ⟨β |F̂†(ω)F̂(ω)|β ⟩ (59)
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Figure 10: Diagram of the model for a WGM resonator coupled to one arm
of a MZI. The resonator is characterised by a complex amplitude transmission
spectrum t(ω). Mode amplitudes are labelled according to the derivation in
the main text.

Since ⟨F̂(ω)⟩= ⟨ŝ(ω)⟩= 0, the middle two terms are zero. Then:

⟨N̂(ω)⟩= t∗(ω)t(ω)β ∗
β + ⟨β |F̂†(ω)F̂(ω)|β ⟩. (60)

The first term is the input photon number expectation value |β |2 times the intensity

transmission past the WGM resonator T (ω)= t∗(ω)t(ω), the second term has ⟨F̂†(ω)F̂(ω)⟩∝

⟨ŝ†(z,ω)ŝ(z′,ω)⟩= FN(ω)δ (z− z′). The second term is the photon number coupled into

the output mode from the environment. This term introduces additional noise: since there

are losses in the resonator this noise is a consequence of the fluctuation-dissipation theo-

rem. From the argument above the second term is negligible in most situations.

2.3.3 Entangled photons coupled to a WGM resonator in the MZI

Now we put the quantum optical model for the WGM resonator into a MZI as shown

in Figure 10. For the input state we again take a simple expression for a photon pair at the

input ports of the first beamsplitter:

|ψin⟩= â†
1â†

2|0,0⟩1,2 ⊗|0⟩env (61)

where |0⟩env is the vacuum state for the environment, or a thermal bath of oscillators,

which is acted on by the noise operators in the quantum WGM model. First we find the

state in modes 5 and 6 after coupling to the WGM resonator.

Operation of first beamsplitter transforming to modes â3, â4:

â3 =
1√
2
(â1 + iâ2); â4 =

1√
2
(iâ1 + â2). (62)
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Coupling mode â4 to the WGM resonator to transform to modes â5, â6:

â5 =
1√
2

t(ω)(iâ1 + â2)+ F̂(ω)

â6 =
1√
2
(â1 + iâ2)

(63)

where the WGM coupling term and noise operators are given by:

t(ω) =

(
r−αeiθ

1− r∗αeiθ

)
F̂(ω) =−i|κ|2

√
Γ

∞

∑
n=0

(r∗)n
∫ (n+1)L

0
dz eiξ (ω)[(n+1)L−z]ŝ(z,ω).

(64)

Writing the relation between input and output modes in terms of a transfer matrix M:(
â5

â6

)
=

1√
2

(
it(ω) t(ω)

1 i

)(
â1

â2

)
+

(
F̂(ω)

0

)
(65)

âout =
1√
2

Mâin + F̂(ω). (66)

Then

âin =
√

2M−1 (âout − F̂(ω)
)

(67)

where

M−1 =
1

2t(ω)

(
−i t(ω)

1 −it(ω)

)
. (68)

Finally, we have the input annihilation operators in terms of the output mode amplitudes

â5, â6:

â†
1 =

√
2

2t∗(ω)

(
iâ†

5 + t∗(ω)â†
6 − iF̂†(ω)

)
â†

2 =

√
2

2t∗(ω)

(
â†

5 + i t∗(ω)â†
6 − F̂†(ω)

)
.

(69)

The output state in modes 5 and 6 after coupling to the WGM is given by substituting

for â†
1, â

†
2 in the initial input state:

|ψ5,6⟩=
1

2(t∗(ω))2

(
iâ†

5 + t∗(ω)â†
6 − iF̂†(ω)

)(
â†

5 + it∗(ω)â†
6 − F̂†(ω)

)
|0,0⟩5,6 ⊗|0⟩env

(70)

|ψ5,6⟩=
1

2(t∗(ω))2

(
iâ†2

5 − t∗(ω)â†
5â†

6 − iâ†
5F̂†(ω)+ t∗(ω)â†

6â†
5 + i(t∗(ω))2â†2

6 −

t∗(ω)â†
6F̂†(ω)− iF̂†(ω)â†

5 + t∗(ω)F̂†(ω)â†
6 + iF̂†2(ω)

)
|0,0⟩5,6 ⊗|0⟩env. (71)

Terms in â†
5â†

6 and â†
6F̂†(ω) cancel:

|ψ5,6⟩=
√

2i
2(t∗(ω))2 |2,0⟩5,6 ⊗|0⟩env +

√
2i

2
|0,2⟩5,6 ⊗|0⟩env

− i
(t∗(ω))2 |1,0⟩5,6 ⊗ F̂†(ω)|0⟩env +

i
2(t∗(ω))2 |0,0⟩5,6 ⊗ F̂†2(ω)|0⟩env (72)
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Now, we see that the probabilities for the states |2,0⟩5,6, |1,0⟩5,6, |0,0⟩5,6 depend on

1/|t(ω)|4, which diverges at zero detuning for critical coupling with no loss. In any

case, these probabilities are much greater than one near resonance. Therefore, we need

to normalise the output state, but we also know that the probability of the state |0,2⟩5,6

should always be 1/2 so that term must remain unchanged. If we separately normalise

the other three terms with normalisation factor A(ω):

A2(ω)

[
1

2|t(ω)|4
+

1
|t(ω)|4

|env⟨0|F̂F̂†|0⟩env|2 +
1

4|t(ω)|4
|env⟨0|F̂2F̂†2|0⟩env|2

]
=

1
2
.

(73)

From Alsing et al., the expectation values of the noise operators can be calculated

using:

env⟨0|F̂F̂†|0⟩env = env⟨0|[F̂ , F̂†]+ F̂†F̂ |0⟩env

= [F̂ , F̂†].
(74)

This commutator is found by using the commutation relation for the output mode ampli-

tudes â5, â6 and using Equation 65:

[â5(ω), â†
6(ω)] = δ (ω −ω

′)

=⇒ [F̂(ω), F̂†(ω ′)] =
(
1−|t(ω)|2

)
δ (ω −ω

′).
(75)

The expectation for the squared noise operators is given by:

env⟨0|F̂2F̂†2|0⟩env = 2[F̂(ω), F̂†(ω ′)]2

=
(
1−|t(ω)|2

)2
δ (ω −ω

′).
(76)

Then the normalisation constant is:

A(ω) =

[
1

|t(ω)|4
+

2
|t(ω)|4

(
1−|t(ω)|2

)2
+

2
|t(ω)|4

(
1−|t(ω)|2

)4
]−1/2

A(ω) = |t(ω)|2
[
1+2

(
1−|t(ω)|2

)2
+2
(
1−|t(ω)|2

)4
]−1/2

.

(77)

The normalised output state is:

|ψ5,6⟩=
√

2i
2(t∗(ω))2 A(ω)|2,0⟩5,6 ⊗|0⟩env +

√
2i

2
|0,2⟩5,6 ⊗|0⟩env

− i
(t∗(ω))2 A(ω)|1,0⟩5,6 ⊗ F̂†(ω)|0⟩env +

i
2(t∗(ω))2 A(ω)|0,0⟩5,6 ⊗ F̂†2(ω)|0⟩env. (78)

Now the probabilities of all the possible output states sum to one for all values of

detuning from the resonance. We also see that the photon pairs in mode 6 have no de-

pendence on the WGM coupling conditions, and the terms with photons in mode 5 have

a 1/(t∗(ω))2 dependence. This is where the double phase shift due to the two-photon

N00N state comes in, because now the phase difference between photons in modes 5 and

6 is twice the usual phase shift from coupling to a WGM resonator.

39



The next stage is to act on this state with the output beamsplitter to interfere modes 5

and 6 which have a phase difference equal to double the WGM phase shift. Transforming

back to creation operators:

|ψ5,6⟩=

(
i

2(t∗(ω))2 A(ω)â†2
5 +

i
2

â†2
6 − i

(t∗(ω))2 A(ω)â†
5F̂†(ω)

+
i

2(t∗(ω))2 A(ω)F̂†2(ω)

)
|0,0⟩5,6 ⊗|0⟩env. (79)

At the output beamsplitter the mode operators transform as:

â†
5 =

1√
2
(â†

7 + iâ†
8); â†

6 =
1√
2
(iâ†

7 + â†
8). (80)

Substituting into the state |ψ5,6⟩ gives the final output state:

|ψout⟩=
i
√

2
4

(
A(ω)

(t∗(ω))2 −1
)
|2,0⟩7,8 ⊗|0⟩env +

i
√

2
4

(
1− A(ω)

(t∗(ω))2

)
|0,2⟩7,8 ⊗|0⟩env

+
1
2

(
A(ω)

(t∗(ω))2 +1
)
|1,1⟩7,8 ⊗|0⟩env −

iA(ω)√
2(t∗(ω))2

|1,0⟩7,8 ⊗ F̂†(ω)|0⟩env

− A(ω)√
2(t∗(ω))2

|0,1⟩7,8 ⊗ F̂†(ω)|0⟩env +
iA(ω)

2(t∗(ω))2 |0,0⟩7,8 ⊗ F̂†2(ω)|0⟩env. (81)

Figure 11 shows the sum of coincidence {P(1,1)} and single {P(0,1),P(1,0),P(0,2),P(2,0)}
detection probabilities as a function of detuning from resonance for WGM parameters

a = 0.9997,r = 0.9990, i.e. overcoupling. ‘Single’ detections refer to all measurement

outcomes where only one single photon detector (not a photon number resolving detector)

detects photons. The sum of all detection probabilities is one showing the output state is

correctly normalised.

Both the single detection and coincidence spectra have a double peak/dip structure

which is very different from the typical Lorentzian dip in the WGM transmission spec-

trum. This seems to be the consequence of the double phase shift for the two photon

N00N state coupled to the WGM resonator. As for the linear phase shift MZI, there are

points in the interference signal with a higher gradient and hence higher sensitivity to

changes in the detuning, than in the classical transmission signal. It may be possible to

make measurements with enhanced sensitivity to the WGM resonance shift using entan-

gled photon pairs. This is explored further in the next section.

Figures 12 and 13 show the coincidence rate and the ratio between the singles and co-

incidence rate, respectively. Over a range of coupling conditions we can see that the dou-

ble dip in the coincidence spectrum emerges as the coupling approaches critical coupling.

The visibility of the double dip spectral shape has the highest visibility for overcoupling.

The singles to coincidence ratio instead has a sharp double peak. Measuring this ratio

would allow both the single and coincidence counts to be used.
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Figure 11: Detection probability spectrum for entangled photon pairs at the
input to a WGM coupled MZI. Coupling parameters for the WGM resonator
were α = 0.9997 and r = 0.9990 (overcoupling). The three measurement
outcomes single detections, coincidence detections, and no detections (zero
counts) are plotted along with the total probability to show the output state
is correctly normalised. The black dotted line shows the transmission spec-
trum for a waveguide coupled to a WGM resonator with the same α and r

parameters.

2.4 Sensitivity Enhancement for a WGM coupled MZI with Entan-
gled Photon Input

In the previous section I showed that the transmission spectrum for a WGM resonator

coupled to one arm of a MZI has a double dip (peak) in the coincidence (singles) count

rate, when the input state is an indistinguishable pair of photons. This spectrum is a con-

sequence of the double phase shift introduced by an N=2 N00N state produced inside the

interferometer and is not seen when considering classical input fields. A clear feature of

the entangled transmission spectra is that they have sharp features with higher gradients

than seen in the classical spectra for the same coupling conditions. In this section I will

investigate the potential sensitivity enhancements that these spectral features might allow

in the detection of shifts in the WGM resonance wavelength.
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Figure 12: Transmission spectra for entangled photon WGM coupled MZI
for coincidence detections. The WGM coupling parameter r is varied from
undercoupling (blue) to overcoupling (red). α is fixed at 0.9997.

2.4.1 Computational model for classical and quantum WGM sensing

For comparison I will consider three cases: 1. ‘Classical transmission’ The trans-

mission spectrum for a single mode classical input field coupled to a WGM resonator,

i.e. the ‘conventional’ WGM sensing experiment. 2. ‘Classical MZI’ The transmission

spectrum for a WGM resonator coupled to one arm of a MZI, with a classical field in

one input mode, and monitoring one of the MZI output modes. 3. ‘Entangled MZI’ The

transmission spectrum for a WGM resonator coupled to one arm of a MZI, with indistin-

guishable photon pairs in the two input modes, and measuring coincidence detections in

the two output modes.

The transmission spectra for these three cases use the equations presented in the pre-

vious section. The classical transmission spectrum:

Iclass = |t(ω)|2 =

∣∣∣∣∣ r−αeiθ(ω)

1− r∗αeiθ(ω)

∣∣∣∣∣
2

. (82)

The classical MZI spectrum (normalised such that the transmission spectrum in one output

mode spans [0,1]):

Iclass,MZI = |1+ t(ω)|2 . (83)

The entangled MZI spectrum, which is the coincidence probability as a function of de-
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Figure 13: Transmission spectra for entangled photon WGM coupled MZI
for ratio between single and coincidence detections. The WGM coupling
parameter r is varied from undercoupling (blue) to overcoupling (green). α

is fixed at 0.9997.

tuning from resonance from the previous section:

Pcoinc =

∣∣∣∣12
(

A(ω)

(t∗(ω))2 +1
)∣∣∣∣2 . (84)

The change we would like to detect for sensing experiments is a shift in the WGM reso-

nance wavelength λo. Typically, this is measured by repeatedly scanning the input laser

wavelength across the resonance and extracting the resonance wavelength and linewidth

using a centroid fitting algorithm (see supplementary information of Ref. [32]). To sim-

plify the experiment and avoid the need to rapidly tune the entangled photon wavelength

we can instead consider an intensity measurement at a single point in the transmission

spectrum with maximum gradient, i.e. at fixed detuning from resonance. This could be

achieved experimentally either by locking the input beam wavelength to the resonance or

ensuring the resonance wavelength is stable over the duration of a measurement. For each

of the three cases introduced above, we can model the sensitivity of an intensity measure-

ment to changes in the resonance wavelength (or linewidth), and the effects of randomly

generated noise in the model signal.

Three examples of transmission spectra for the classical and entangled cases are shown

in Figure 14, with overcoupling, near-critical coupling, and undercoupling conditions. On

the right hand side the gradient dI/dω is shown. In the entangled case, the narrow peak

at the centre of the transmission spectrum has sharp gradients, with the gradient being
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Figure 14: Classical and entangled photon transmission spectra. Transmis-
sion spectra for a WGM resonator coupled to a waveguide with classical light
(blue), a WGM coupled MZI with classical input state (orange, dashed), and
a WGM coupled MZI with entangled photon pair input state (yellow). The
left column shows the transmission spectra (entangled photon spectrum is
for coincidence detections), right column shows the gradients of the spectra.
Three WGM coupling conditions are shown: (a) overcoupled (α = 0.9997,
r = 0.9990), (b) near critical coupled (α = 0.9997, r = 0.99965), and (c)
undercoupled (α = 0.9997, r = 0.9998).
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Figure 15: Illustration of maximum gradient points used for sensing model.
(a) Classical transmission spectrum (α = 0.9997, r = 0.9990) showing the
maximum gradient point ω∗. The noise model uses a measurement of the
intensity I∗ to track changes in the resonance position. (b) Entangled MZI
transmission spectrum (α = 0.9997, r = 0.9990), here the maximum gradi-
ent point is on the sharp central peak of the coincidence spectrum. Grey
areas show the maximum frequency change before the transmission spec-
trum reaches a maximum/minimum. This it the frequency range taken as
the dynamic range of the measurement in Figure 19.

maximum near critical coupling. This suggests there is a highly sensitive point in the

entangled coincidence spectrum where small changes in ω are translated into relatively

large changes in the intensity I. Examples of the maximum gradient points ω∗ which are

tracked for each coupling condition are shown in Figure 15.

From the maximum gradient point, we can read off the change in the resonance fre-

quency ωo and linewidth Γ in the combined frequency change ∆Ω, via the change in

transmission intensity ∆I:

∆I =
dI
dω

∆Ω

∆Ω = ∆ωo +
1
2

∆Γ.

(85)

We now need to make a time series of intensity measurements and add randomly gener-

ated noise to the signal to investigate the sensitivity of resonance shift measurements in

each of our three cases. Typically Nsteps = 103 time steps were used. For each time step,

two types of noise are added to the transmission spectrum. The first is a random change

in the resonance frequency ωo. This is to model noise sources affecting the WGM res-

onator such as thermorefractive noise, changes in the coupling conditions, or fluctuations

in the laser wavelength. We assume this noise is dominated by thermal sources so it can

be modelled by a Gaussian distribution. The second noise source is photon shot noise

due to counting small numbers of photons per time bin. This is modelled with a Gaussian
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distribution with standard deviation
√

N (where N is the number of photons counted per

time bin) to approximate the Poisson distribution for the photon number in a coherent

state.

The resonance frequency noise and shot noise are both generated using the MATLAB

function randn() which draws pseudo-random samples from a Gaussian distribution. The

final 3σ uncertainty in the combined frequency change ∆Ω was calculated from the stan-

dard deviation of the measured intensity over 103 time steps, using the gradient dI/dω to

convert from intensity change ∆I to ∆Ω.

An important thing to consider is how to fairly compare the number of photons per

time bin between the three different cases. A fair comparison should have the same pho-

ton rate at the sample being detected, so in our case the same photon rate coupled to the

WGM resonator. The photon number expectation value for the two photon N00N state in

one arm of the MZI is ⟨N̂⟩ = 1 per photon pair at the input. Let the photon pair rate be

P. For the classical transmission case the same photon rate at the sample is achieved with

an input photon rate R = P. For the classical MZI, an input rate of R′ = 2P at one of the

MZI inputs results in an equal photon rate at the sample.

To calculate the shot noise in the photon number per time bin for each measurement,

the detected photon rate is relevant. The maximum (off-resonance) detection rates are P

coincidence rate for the entangled MZI case, P singles rate for the classical transmission

case, and P singles rate for the classical MZI case since photons are detected at one of the

MZI outputs. Therefore the shot noise per time bin is calculated using the same detected

coincidence/singles rate in all three cases.

The following plots use parameters which were chosen to be roughly comparable to

typical WGM sensing experiments to give some intuitive link to real experiments. For

the noise in the resonance wavelength, a standard deviation of 1 fm was used throughout

the following investigation, and all noise values are given in fm for comparison to experi-

ments which typically quote wavelength shifts. A MATLAB script used to calculate these

results is included in Appendix B.

2.4.2 Modelling results - sensitivity enhancements

Figure 16 shows the 3σ uncertainty ∆Ω for classical transmission, classical MZI, and

entangled MZI as a function of detected photon count rate at a fixed time bin width of

∆t = 100 ms, i.e. increasing the optical power used in the measurement. The coupling

conditions are set to slightly overcoupled: α = 0.9997 and r = 0.9996. There are two

main regimes: for photon count rates > 106 Hz, the resonance frequency noise dominates
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Figure 16: Noise in WGM frequency shift measurement as a function of
detected photon count rate. The 3σ level noise in the combined frequency
shift ∆Ω was calculated from a Monte Carlo model with 103 measurements
per point. The integration time per measurement was ∆t = 10−1 s, so the
photon number per measurement is R∆t, where R is the detected count rate
on the x axis. The dotted line shows the 3σ level for the noise that was
added to the resonance position (3 fm) to simulate classical noise sources.
This noise dominates at high photon count rates, but at low count rates the
measurement is shot-noise-limited.
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and the noise is constant as the optical power increases, slightly above 3 fm expected from

the 1σ = 1 fm noise which was added. This is the regime in which typical WGM sensing

experiments will operate. For count rates < 104 Hz, shot noise begins to dominate and

the uncertainty in the wavelength shift increases as
√

N as the number of photons per time

bin N decreases.

From Figure 16, we see that the entangled MZI has reduced noise in the wavelength

shift in the shot-noise-limited region compared to the two classical cases. We can under-

stand this to come from the higher gradient dI/dω at the point being monitored in the

entangled MZI spectrum, since the intensity noise ∆I is scaled down by this factor when

converting to ∆Ω. The ratio between the noise in the three cases reaches a constant at low

count rates.

The reduced noise in the entangled MZI case illustrates there could be a sensing ad-

vantage to using entangled photon pairs, but only in the shot-noise-limited regime - at low

optical power. The absolute noise in the measurement is still minimised by increasing the

optical power and reaching the noise floor due to the thermorefractive noise, laser noise

etc. that affects the WGM resonance frequency. However, if the measurement is limited to

low optical power then the entangled photon MZI setup clearly provides an advantage in

sensitivity to WGM wavelength shifts. Next, we would like to investigate the noise level

over a range of coupling conditions to the WGM resonator to find the coupling regime

which offers the best sensitivity enhancement.

In Figure 17, the 3σ noise level is plotted as a function of the coupling reflection co-

efficient r, from overcoupled (r = 0.9990) to undercoupled (r → 1). These plots were all

with a photon number per bin R∆t = 380, which was chosen because it is at the edge of

the shot-noise-limited regime (see Figure 16). Figure 17 shows the same data but plotted

relative to ∆Ω for the classical transmission case as the ratio ∆Ωclasstrans/∆Ω, which is

the factor by which the noise is reduced compared to the conventional classical WGM

transmission measurement. The factor ∆Ωclasstrans/∆Ω is also the enhancement factor of

the SNR, compared to the SNR for a measurement with the classical transmission setup.

A clear feature from Figure 17 is the behaviour around the critical coupling point

(r = α = 0.9997), where the gradient of the entangled MZI transmission spectrum di-

verges. This produces a sharp peak in the enhancement factor for the entangled MZI

noise. We also see that the entangled MZI measurement has the lowest noise level across

the overcoupled regime, and for undercoupling with r ≲ 0.99978.

To see the noise behaviour across the full range of photon count rate shown in Figure

16 we can plot the entangled MZI enhancement factor ∆Ωclasstrans/∆Ω for different pho-
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Figure 17: Noise in WGM frequency shift measurement as a function of
WGM coupling parameter r. (a) The parameter α was fixed at 0.9997 and
r was varied from under- to overcoupling, critical coupling is shown by the
black vertical line. ∆Ω is shown for the three experimental cases at a fixed
photon number per measurement of R∆t = 3.8×102. The dotted line shows
the 3σ noise level of the classical noise. (b) Ratio between noise in the
classical transmission case ∆Ωclass trans and the two MZI cases, i.e. showing
the enhancement factor in the SNR compared to the classical transmission
case.
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Figure 18: Noise in WGM frequency shift measurement as a function of
WGM coupling parameter r and photon number per measurement. Ratio
between ∆Ωclass trans and the noise in the entangled photon MZI model for
fixed α = 0.9997 and varying r. Colours show changing photon number per
measurement, i.e. moving along the x axis in Figure 16.

ton count rates, see Figure 18. As expected from Figure 16, the sensitivity enhancement

is greatest and roughly constant in the shot-noise-limited regime (photon number per time

bin N ≲ 103).

It would seem like the best sensing performance for the entangled MZI case is achieved

with the WGM resonator as close as possible to critical coupling. However, close to crit-

ical coupling the sharp peak in the entangled MZI spectrum becomes extremely narrow

(see Figure 14). This will ultimately limit the dynamic range of the sensor since the spec-

trum can easily shift away from the region with the highest sensitivity. Here the dynamic

range will be taken to be the region from the maximum gradient point to the nearest max-

imum/minimum in the spectrum, as illustrated in Figure 15. If the noise level becomes

higher than this dynamic range then no signals can be detected.

The dynamic range is shown in Figure 19 as the grey area. The dynamic range ∆λDR

was calculated for the entangled MZI spectrum over the full range of coupling conditions,

then plotted as ∆Ωclasstrans/∆λDR to compare to the entangled MZI SNR enhancement

ratio. All the points within the grey area have a 3σ noise level greater than or equal to the

dynamic range, so cannot be used effectively for sensing. This excludes the large peak

near critical coupling, and shows that the highly overcoupled regime provides the best

performance.
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Figure 19: Effect of dynamic range on SNR enhancements achievable with
the entangled photon MZI model. The classical transmission and entangled
MZI models are compared with the same data as in Figure 17. The grey
area shows where the entangled MZI 3σ noise level is greater than or equal
to the dynamic range of the edge-of-resonance intensity measurement, so
these regions of the parameter space cannot be used for a measurement of
the resonance shift.
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Figure 20: Effect of input linewidth on SNR enhancements achievable with
the entangled photon MZI model. The classical transmission and entangled
MZI models are compared with the same data as in Figure 17. The green
line shows the entangled MZI noise for a monochromatic entangled photon
state, points show the noise as the spectral linewidth of the entangled photon
state is changed. Linewidths are given as ratios with the WGM linewidth in
the classical transmission case, from 0.1 to 1.0 times the WGM linewidth.

A further consideration is the spectrum of the input light to the WGM resonator. So

far it has been assumed that while the WGM resonance has a linewidth, the input light

is monochromatic. For a more realistic treatment the linewidth of the input light should

be included, since a laser or photon pair source will not generally have a linewidth that

is much less than the WGM linewidth. To model this effect, the transmission spectra for

each case were convolved with a Gaussian function, then the convolution was used in-

stead of the normal spectrum to model the noise ∆Ω from a time series of 103 points.

Figure 20 shows the entangled MZI noise level relative to the classical transmission

case, including the linewidth of the input light. The ratio between the input linewidth and

the WGM linewidth was varied between 0.1 and 1.0. As the input linewidth increases,

first we see the peak near critical coupling disappears. This is expected since the spectral

features near critical coupling become very narrow and will not be resolved if the input

spectrum is wider than these features. In the strongly overcoupled regime, the SNR en-

hancement remains high up to a linewidth ratio of around 0.5. For an input linewidth

equal to the WGM linewidth, there is no longer any sensitivity enhancement across most

of the range of coupling conditions.
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Overall, to achieve the best sensitivity enhancement the WGM resonator should be

strongly overcoupled, and the input linewidth should be less than around 0.3 times the

WGM linewidth. Under these conditions we see approximately a factor of two enhance-

ment in the SNR of the resonance shift measurement, when the photon number per time

bin R∆t = 380. This enhancement is compared to the conventional WGM transmission

measurement, with a classical light source and an equal input photon count rate. For

lower photon count rates, the enhancement factor is expected to stay approximately con-

stant based on Figure 16. As the count rate is increased, the enhancement factor will

decrease until the noise becomes limited by the conventional resonance frequency noise

introduced earlier.

2.5 Conclusions

This chapter introduced a model for describing WGM resonances in quantum optics

from Alsing et al. [62]. The model was applied to a WGM resonator coupled to one arm

of a MZI. For a classical input state, the transmission spectrum is similar to the trans-

mission spectrum of a single optical mode coupled to a WGM resonator. However, with

an entangled photon pair as the input state, the transmission spectrum in terms of coin-

cidence detections at the interferometer outputs has a double dip feature which is most

visible for an overcoupled WGM resonator.

Using the feature that the entangled transmission spectrum has points with higher gra-

dients than the classical spectra, I showed a computational study into a simple WGM

resonance shift measurement by monitoring the transmission at the highest gradient point

in the spectrum. With this model, I showed an example where the entangled photon input

state can provide up to a factor of two enhancement in the SNR of this measurement com-

pared to a classical transmission measurement without the MZI (the classical measure-

ment with the MZI had a lower SNR than this). The best enhancement was achieved for a

strongly overcoupled WGM resonator, and in the low photon number regime (∼100 pho-

tons per time bin) where the measurement is shot-noise-limited. It also requires that the

spectral width of photons is narrower than the WGM linewidth (∼0.1 times the linewidth).

This was intended as one example of how a SNR could be achieved using entangled

photons, with some consideration of realistic experimental parameters. Considering opti-

cal losses in the components and detectors in this measurement scheme will have a large

impact on the enhancements which are actually achievable.

The entangled transmission spectrum result is interesting for the physics of WGM

resonators in itself. The enhanced phase shift experienced by path-entangled photons
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in a MZI is now being applied to the phase shift from an optical resonance, rather than

a linear phase change which has been more commonly studied in previous work. The

resonator produces a much more complex behaviour as the form of the entangled photon

transmission spectrum depends strongly on the coupling condition of the WGM resonator.

This model also serves to motivate the following chapters which follow the building

of single photon and entangled photon sources for quantum sensing applications. Chap-

ters 6 and 7 will revisit applying quantum sensing schemes to WGM resonators and give

some further discussion of how to realise these experimentally.
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Part II - Investigating Single Photons from hBN
Defects with sub-Poissonian Statistics for
Applications in Biosensing
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3 Single Photon Emission from Atomic Vacancy Defects
in Hexagonal Boron Nitride

3.1 Introduction

Single photon states have been introduced as a fundamental concept in quantum op-

tics, as an n = 1 photon number state |n⟩ (or Fock state). One approach to preparing

light to use in a sensing experiment, a ‘bottom-up’ approach, would be to generate single

photons in order to build more complex quantum optical states. For example, by combin-

ing indistinguishable single photons via HOM interference to produce entangled photon

states. The state made by HOM interference of pairs of single photons is a two-photon

N00N state, which has found many applications in quantum-enhanced interferometry.

An ideal single photon source for this application would have a high brightness (single

photon count rate), high single photon state purity (indicated by a low g(2)(0) value), and

would produce stable emission over long time periods. To observe HOM interference,

the single photons would also have to have high indistinguishability; requiring a narrow

optical spectrum which is sufficiently stable over time, and emission into a single polari-

sation mode. A further advantage would be a source operating at room temperature. For

applications to sensing with biological samples, a room temperature photon source could

be brought close to the sample or even integrated in a lab-on-chip device in the future.

Single photon sources include quantum dots [64, 65, 66, 67], trapped ions [68], sin-

gle fluorescent molecules [69, 70], and atomic vacancies in crystals. In the last category,

well known systems are NV-centres in diamond crystals [71, 72], and vacancy defects

in 2D crystals such as transition metal dichalcogenides (TMDs) [73, 74]. TMDs includ-

ing MoSe2, MoS2, WSe2 and WS2 host single photon emitters and, being 2D materials,

have the potential for integration into compact heterostructure devices. However, these

materials must be used at cryogenic temperatures to produce high quality single photon

emission. In this thesis I will focus on an alternative 2D material: hexagonal boron nitride

(hBN). hBN also hosts single photon emitters but maintains its high quality single photon

emission up to room temperature [75, 76].

Recently, commercially available single photon sources have been developed based

on quantum dots in micropillar cavities [67] and photonic crystal cavities [66]. Both

these sources require cryogenic temperatures to operate and produce single photons in

the near-infrared (780 nm - 980 nm). The photon indistinguishability is extremely high:

up to 98%, and the single photon purity (measured using the second order correlation

function, described later in this chapter) is in the range g(2)(0) = 0.01− 0.04. Although

these sources have excellent performance, the cost and the need for cryogenic systems
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is still a barrier to their use. hBN single photon emitters are more readily accessible for

experiments in our lab.

In this chapter I will briefly describe the properties of atomic vacancy defects in sin-

gle crystals of hBN, then detail the development and characterisation of single photon

sources using these defects. The concept of building entangled states from single pho-

tons combined by HOM interference was not successful using this source due to its low

coherence time. Besides entanglement, a property of single photons which could poten-

tially be applied to sensing in biological systems is their low photon number variance.

Towards this end, in the next chapter I will present experiments on stabilising the hBN

crystal temperature in order to improve the intensity stability of single photon emission. I

will also present measurements and modelling of the Mandel Q parameter. These studies

demonstrate some important considerations when finding sensing applications for single

photon emitters such as hBN.

3.2 Single Photon Emission from Hexagonal Boron Nitride

hBN is an insulating material with a 2D layered structure. It has found applications

as an insulating layer in 2D heterostructure devices and in combination with conductive

graphene monolayers. In its bulk form, boron nitride is also known as white graphite due

to the similarities in structure between BN and graphite. For single photon emission, the

relevant property of hBN is its atomic vacancy defects. These defects are missing atoms

and sometimes substitutions in the crystal structure, that introduce energy levels within

the wide hBN bandgap (6 eV). Optical transitions between these levels are well isolated

from thermal excitation; this allows excitation of individual transitions resulting in single

photon emission, even at room temperature. Not requiring cryogenic cooling systems for

single photon emission makes hBN significantly more accessible than other 2D single

photon emitters such as TMDs.

Chemical structure. Many possible chemical structures have been proposed for hBN

defects, such as a nitrogen vacancy or an anti-site nitrogen vacancy (a missing nitrogen

atom with an adjacent boron atom replaced by nitrogen) [75]. There may also be other

dopant elements involved in the defect structure, including additional carbon or oxygen

atoms. The exact structures of hBN defects are still under much discussion, and there

are even some suggestions that some types of single photon emitters in hBN are single

organic molecules trapped under hBN layers [77].

Native defects include VN (a nitrogen vacancy), V−1
N (negatively charged nitrogen va-

cancy), and VNNB (nitrogen vacancy with an adjacent boron substituted by nitrogen).

Some of these structures are shown in Figure 21. Computational studies using den-

sity functional theory (DFT) have estimated the transition energies for these and many
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Figure 21: Schematic of two proposed structures for defects in a single
layer of hBN. Blue atoms are nitrogen and pink atoms are boron. Figure
adapted with permission from [75].

other defects [78, 79], with carbon containing defects attracting particular attention as

researchers try to pin down the identities of single photon emitters in the visible range.

The VNCB defect was found by Ref. [80] to match very closely to the properties

of hBN emitters emitting near 2 eV (620 nm). In Ref. [81] the concentration of hBN

emitters was conclusively shown to depend on the concentration of dopant carbon atoms.

In that work, the negatively charged VBC−
N defect is proposed as the most likely candidate

for transitions around 585 nm, based on DFT calculations. Defects may even involve

larger structures such as clusters of substituted carbon atoms. DFT simulations in Ref.

[82] show that trimers of three substituted carbon atoms produce transitions in the visible

range (around 750-760 nm) with spectra consistent with experiment. Carbon dimers in

hBN have been identified with narrow transitions often observed at 4.1 eV (300 nm) [83]

due to emitters excited under UV illumination. Some hBN emitters in the visible range

have also been attributed to oxygen containing defects, such as the O2BVN vacancy [84].

With so many candidates for single photon emitters in hBN, it is likely that our sam-

ples host several different types of defects. However, it is not necessary to know the exact

chemical composition in order to characterise the single photon emission. Instead, a sim-

plified energy level structure, which ignores details of the emitter’s structure, is sufficient

to describe the photodynamics of single photon emission.

Energy Level Structure. Most models for the energy level structure of hBN single pho-

ton emitters suggest three or four levels are needed. The simplest emitter would have a

two-level structure, with transitions between the ground and excited states being responsi-

ble for antibunched photon emission. In addition to these, metastable shelving states can

be added which provide non-radiative decay paths from the excited to the ground state

and cause bunching in the photon emission. A three or four-level structure is supported

by fitting a model to second order correlation function g(2)(τ) data [85, 86].

The dynamics of photoemission may be modelled using a set of coupled differential
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Figure 22: Three-level model for the hBN atomic defect system. The
transitions are characterised by four timescales τ12, τ21, τ23, and τ31.

equations for the populations of the levels ρi(t) at time t, as described by Boll et al. [85]:

ρ̇1(t) =−k12ρ1(t)+ k21ρ2(t)+ k31ρ3(t) (86)

ρ̇2(t) = k12ρ1(t)− k21ρ2(t)− k23ρ2(t) (87)

ρ̇3(t) = k23ρ2(t)− k31ρ3(t). (88)

Here ki j are the transition rates between levels i, j. In this case a three-level system is

shown, but additional shelving states may be added if required to describe the g(2)(τ)

function. A possible energy level structure for a three-level system is shown in Figure 22.

The normalised second order correlation function is derived from these equations as [87]:

g(2)(τ) =
ρ2(τ)

ρ2(t → ∞)
. (89)

The initial condition for solving the differential equations is the emitter in the ground

state: ρ1(0) = 1, ρ2,3...(0) = 0. Then, in order to fit to experimental data for g(2)(τ), the

differential equations are solved for ρ2 using the transition rates ki j as fitting parameters.

The origin of this long-lived shelving state may be due to conversion between differ-

ent charge states of the emitter. As discussed in [88] we can consider a model in which

the emitter enters the shelving state via excitation into the conduction band by a two-

photon excitation process. This causes the emitter to become more positively charged in

the shelving (‘dark’) state, and must re-capture an electron from the conduction band to

return to the radiative (‘bright’) state. Evidence for this model is provided by re-pumping

the emitter into the bright state: for example excitation at 532 nm / re-pumping at 450 nm

[88], and excitation at 675 nm / re-pumping at 532 nm [89]. In both cases, introducing

the re-pumping beam enhances the emission rate and reduces the photon bunching of the
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emission.

Wavelength. The emission spectrum of a typical hBN quantum emitter excited at 532 nm

features a sharp zero phonon line (ZPL) with a centre wavelength in the range 540-800 nm

[90, 84] and a linewidth at room temperature ∼nm [75, 90, 91]. However, hBN emission

in the UV region has also been reported using short wavelength excitation [92].

There is significant heterogeneity in the ZPL wavelength between different emitters,

reflecting the variety of possible defect structures and variation in the environment around

a defect. For example, the layer in which an emitter is found could vary, as well as its

location on a hBN single crystal and the local strain around the emitter.

Fabrication. Monolayer or multilayer flakes of hBN are obtained from bulk hBN single

crystals by mechanical or solvent exfoliation. To increase the density of vacancy defects

in the material, hBN layers must then be activated. For the experiments presented here, the

hBN samples are provided by the group of Professor Igor Aharonovich at the University of

Technology, Sydney. These samples are multilayer hBN flakes which have been activated

by annealing at 850◦C in a tube furnace under an argon atmosphere, according to the

method described in Ref. [75].

Alternative activation methods include oxygen plasma etching [93] and irradiation

with ion or electron beams [94]. Emitters with a narrow range of ZPL wavelengths

have been produced by growing hBN films by low-pressure chemical vapour deposition

(LPCVD) [95]. More recently, ion beams have been used to induce defects deterministi-

cally at chosen points on a hBN crystal [92].

Applications. Single photon emitters in hBN are beginning to reach the stage of being

applied to quantum technologies. For example, hBN quantum emitters have been devel-

oped as pulsed single photon sources for quantum key distribution (QKD) operating at

room temperature [96, 97].

Using spin defects in hBN, in particular the V−
B vacancy, magnetic field dependence of

the photoluminescence was shown in Ref. [98]. These spin defects have been manipulated

using optically detected magnetic resonance (ODMR) [99, 100]. This work on magnetic

field sensitive quantum emitters in hBN could lead to magnetic field sensors or even spin-

based qubits.

hBN emitters can be integrated with cavities; it is even possible to fabricate photonic

crystal cavities from single flakes of hBN as shown in Ref. [101]. Of particular relevance

to this project is the integration of hBN emitters with WGM resonators. Ref. [102]

demonstrates a hBN/TiO2 ring resonator hosting V−
B spin defects. An ensemble of defects

are excited by the cavity mode which enhances the photoluminescence intensity via the

Purcell effect. Since the emission spectrum of the defects is much broader than the WGM

profile the resulting emission spectrum is a comb of WGMs within a broad envelope due
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to the photoluminescence spectrum.

In Ref. [103] single quantum emitters in a hBN flake are coupled to a SiN ring res-

onator using CMOS fabrication processes. The input and output light from the resonator

is coupled via a waveguide. By coupling single emitters to the cavity modes it was pos-

sible to demonstrate single photon emission and, as for the previous paper, the emission

spectrum is a comb of narrow WGM lines within the envelope of the emitter’s ZPL.

A distinct advantage of using an on-chip microring resonator system in [103] is that

an emitter could be located on the hBN flake, then the resonator fabricated on top so as

to overlap the emitter in a controlled way. The same procedure would not be applicable

to coupling a hBN emitter to a microsphere resonator. With a microsphere, hBN would

have to be attached non-deterministically and the probability of overlapping an emitter

with the WGM around the equator would be very low.

3.3 Experimental Setup

Individual atomic vacancy defects in multilayer hBN single crystals were located and

studied using a custom-built confocal microscope setup. Professor Jolly Xavier designed

and built the setup. I was involved in building the setup, particularly the later modi-

fications and making the LabVIEW control software, which was done with Dr Samir

Vartabi Kashanian. In this custom microscope setup, the single photon emission was

separated from the pump laser at 532 nm and detected on two single photon avalanche

diodes (SPADs). The following sections detail the characterisation methods used to study

the photon statistics of these single photon sources.

Solvent-exfoliated multilayer hBN nanoflakes (Graphene Supermarket) were provided

by our collaborators Dr Minh Nguyen and Professor Igor Aharonovich, stored in a suspen-

sion of 50:50 water:ethanol. These crystals were already activated by thermal annealing

at 850◦C under an Ar atmosphere to increase the density of atomic vacancy defects. In

order to use the sample, 10 µl amounts were drop-cast onto 5×5 mm silicon substrates,

then annealed further at 500◦C for 30 minutes to remove the solvent and any organic im-

purities. Drop-casting was done gradually with the substrate at 50◦C, allowing each drop

to dry partially before adding the next. The result was a visible white residue of hBN

deposited in rings over the surface of the substrate, as shown in Figure 23.

Both CW and pulsed lasers at 532 nm were used as pump lasers, so lifetime measure-

ments could also be performed on the same setup. The CW laser (Prometheus, Coherent

Inc.) is very narrow linewidth: < 1 kHz. The pulsed laser (PicoQuant) has both CW and

pulsed modes, with a linewidth < 1 nm, pulse length 72 ps, and repetition rate tuneable

up to 80 MHz.

61



Figure 23: hBN samples drop-cast on silicon substrates. (a) Four 5×5 mm
silicon substrates with hBN multilayer flakes drop-cast from a suspension
in water/ethanol. (b, c) Micrographs of hBN nanoflakes deposited on the
substrate. Scale bars are 100 µm.

A schematic of the setup is shown in Fig. 24. The pump beam at 532 nm from either

the CW or pulsed lasers is steered by two scanning mirrors (Thorlabs Inc.) which are

used to align the beam to the centre of the objective back aperture. They can also be used

to steer the beam over the sample surface with high precision and very quickly, however

the scanning range is limited by the back aperture of the objective blocking the beam. A

scan lens ensures the spot size is roughly uniform as it moves across the image plane.

The pump beam is focused by a 100x objective with numerical aperture (NA) 0.9 to a

spot on the sample surface ∼1 µm in diameter. The sample itself is mounted on a custom

aluminium sample holder on top of an xyz piezo translation stage (Nanocube, PI Ltd.).

Using the piezo stage in closed loop operation the sample can be moved over a 100 µm

range with 2 nm precision. The stage is controlled with a LabVIEW virtual instrument

(VI) so the sample position can be raster scanned to produce a fluorescence intensity map

of the surface.

Emission from the sample at 570-700 nm is separated from the reflected pump beam

by two long-pass dichroic mirrors with band edges around 550 nm and any remaining

pump light is filtered out by a long-pass filter (transmitting > 568 nm). An angle-tuneable

band-pass filter is also used with bandwidth 20 nm and transmission variable from 560-

630 nm (Semrock).

The emitted light is coupled into an optical fibre to be taken to the SPADs. For most

experiments multimode fibre with a 50 µm core diameter is used to maximise the collec-

tion efficiency of single photons, however single mode fibre must be used to maintain a

single spatial mode for experiments on HOM interference.

When the tuneable filter is rotated, the output beam walks-off the optic axis. To pre-

vent this reducing the fibre coupling efficiency a compensating plate was added after the
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Figure 24: Custom confocal microscopy setup for studying hBN quantum
emitters. DM: dichroic mirror transmitting > 550 nm; HWP: half wave-
plate; PBS: polarising beamsplitter; BS: multimode fibre beamsplitter; LPF:
longpass filter transmitting > 568 nm; BPF: tuneable bandpass filter with
passband 20 nm; SPAD: single photon avalanche diode; DAQ: data acquisi-
tion board.
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Figure 25: Fluorescence intensity maps of quantum emitters in hBN sam-
ples. (a) Standard large area scan over 50×50 µm area. (b) Standard high
resolution scan zoomed in on a single emitter, 4×4 µm area. Colour maps
show photon count rate in Hz.

filter which rotates in the opposite direction. Properly calibrated, the filter and compen-

sating plate can be rotated by automated rotation mounts to produce a rough emission

spectrum. This was included as a feature in the LabVIEW control VI for the experiment.

A typical experiment will first involve mapping an area of the hBN sample by scan-

ning the piezo stage and recording the photon counts at each point over a short integration

time (typically 10 ms). Defects appear as bright spots in the fluorescence intensity scan,

typically 10-20 in a 50×50 µm scan area. Fig. 25 shows example fluorescence intensity

maps of hBN samples. After identifying the location of a defect, the pump beam is steered

to that location and the emission is split onto two SPADs (PDM Series, Micro Photon De-

vices) in the Hanbury Brown and Twiss (HBT) configuration. Around the wavelength of

our filters, these SPADs have a detection efficiency of approximately 45%. The second

order correlation (g(2)(τ)) function is measured to test the purity of single photon emis-

sion. This process is repeated for many emitters until one is found which satisfies the

condition g(2)(τ)< 0.5, as explained in the next section.
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3.4 Characterising Single Photon Emission

3.4.1 Second Order Correlation g(2)(τ)

In terms of creation and annihilation operators the second order correlation function

is defined as [1]:

g(2)(τ) =
⟨â†

1(t)â
†
2(t + τ)â2(t + τ)â1(t)⟩

⟨â†
1(t)â1(t)⟩⟨â†

2(t + τ)â2(t + τ)⟩

g(2)(0) =
⟨â†

1â†
2â2â1⟩

⟨â†
1â1⟩⟨â†

2â2⟩
.

(90)

⟨...⟩ denotes averaging over time t. For a single photon source, the two modes 1 and 2

are made by splitting the single photon beam, and g(2)(τ) quantifies correlations between

detections in one mode at time t with detections in the other mode after a time delay τ .

The value of g(2)(0), indicates antibunched emission from a photon source if g(2)(0)<

1. Intuitively, this indicates that photons are being detected on either one detector or the

other, and that fewer coincidence detections are seen than expected for random photon

arrivals. An n-photon number state has [1]:

g(2)(0) =
n−1

n
. (91)

So an ideal single photon state has g(2)(0) = 0. The threshold normally taken for single

photon emission is g(2)(0) < 0.5. Since g(2)(0) = 0.5 for the n = 2 number state then a

lower value shows the largest contribution to the photon number distribution is from the

single photon state.

To characterise the g(2)(τ) function a HBT experiment was used, implemented using

a fibre beamsplitter. The two outputs are taken to two fibre coupled SPADs. Electronic

pulses triggered by single photon detections are delivered to two input channels of a sin-

gle photon counting module (ID900 Time Controller, ID Quantique) which can assign

timestamps to each detection at a resolution of up to 13 ps. The overall time resolution is

limited to 50 ps by the detectors.

Experimentally, the g(2)(τ) function corresponds to a histogram of time differences

between photon arrivals at the two detectors. There are two approaches to building this

histogram: a start-stop measurement or calculating g(2)(τ) from the raw photon detection

times. A start-stop measurement records the delay between a start pulse on one detector

and the next stop pulse on the other detector. This is a fast method which can be done

in real time using the Time Controller’s FPGA hardware, however the histogram range is

limited because it is biased to measuring short delays between detection times.
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Figure 26: Second order correlation g(2)(τ) functions for two different hBN
emitters under (a) CW excitation 360 µW power, 600 s acquisition time;
and (b) pulsed excitation with 168 µW mean power, 20.03 MHz repetition
rate and 1200 s acquisition time. The error bars in the CW plot (a) were
calculated using Equation 95, and the red line is a fit using the three-level
model Equation 96. Both CW and pulsed measurements have g(2)(0)< 0.5,
indicating single photon emission: g(2)(0) = 0.23±0.06 in (a) and g(2)(0) =

0.46±0.08 in (b).

For g(2)(τ) histograms over long timescales, the histogram must be calculated from

the raw photon detection times or timestamps, recorded relative to the start of the mea-

surement. The timestamps for each channel are arranged into two arrays with Na,b total

timestamps from each channel: {ta1, ta2...taNa}, {tb1, tb2...tbNb}. The differences between

all times are calculated: {ta1 − tb1, ta1 − tb2...ta2 − tb1, ta2 − tb2...}. Keeping only time dif-

ferences below the defined histogram window T , these time differences are plotted as a

histogram with a bin width ∆t. The resulting histogram corresponds to the unnormalised

second order correlation function. The normalisation factor knorm depends on the total

detections from each channel, Na and Nb, the total acquisition time Taq, and the bin width

∆t:

knorm = NaNb
∆t
Taq

. (92)

When the histogram is re-scaled by 1/knorm it is normalised to one for |τ| → ∞ and corre-

sponds to the normalised second order correlation function g(2)(τ). Figure 26(a) shows a

normalised g(2)(τ) function; note that the function decreases slowly to 1 beyond the range

shown for τ , like in Figure 27.

There is also a correction for background counts due to stray laser light or background

fluorescence. The signal to background ratio SBR is measured from the fluorescence

intensity map of the emitter by taking the ratio between the peak fluorescence intensity

and the average background. The normalised g(2)(τ) is then corrected using the following
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Figure 27: Second order correlation function g(2)(τ) plotted over 7 orders of
magnitude in delay time τ . Fits using three- or four-level models (Equations
96 and 97, respectively) are shown by green and red lines. For this emitter a
four-level model with three timescales, one antibunching and two bunching
timescales, is required to properly fit the data at long delay times.

transformation [85, 104]:

g(2)corrected(τ) =
g(2)raw(τ)+σ2 −1

σ2 (93)

σ =
SBR

SBR+1
. (94)

When using a multimode fibre and fibre beamsplitter at the output, there were sharp spikes

in all g(2)(τ) histograms at ±18 ns; many times higher than the other points. When the

length of multimode fibre was increased, the spacing of these spikes also increased, there-

fore these must be due to back reflections from the fibre connections. This effect was

never seen when using single mode fibres since all single mode fibres had angled APC

connections to prevent back reflections. The spikes were always far from the antibunching

dip and so did not affect the results. These points were removed when fitting functions to

the g(2)(τ) data.

Assuming Poissonian statistics for the background noise, error bars are given by:

∆g(2) =

√
g(2)raw

knorm
. (95)

A function can be fitted to the experimental histogram using a three-level model for the

emitter. This has four parameters: A, B (antibunching depth and bunching parameters),
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τ1 and τ2 (two characteristic emission lifetimes):

g(2)f it (τ) = 1− (1+A) exp
(
−|τ|

τ1

)
+B exp

(
−|τ|

τ2

)
. (96)

An example of a g(2)(τ) histogram for CW excitation of a hBN emitter including back-

ground correction, error bars and the fit using Equation 96 is shown in Figure 26(a). The

emitter clearly passed the threshold of single photon emission with a value of g(2)(0) =

0.23±0.06. This measurement was done at 360 µW excitation power with 600 s acqui-

sition time.

Another approach to fitting a function to the g(2) data is to use the energy level model

of the emitter in Equations 86-88. This method is described in [85], where at least a

four-level system is needed to properly fit g(2) data. The populations of all four levels are

expressed in a system of differential equations, and all six transition rates plus the signal

to background ratio are found by fitting this model to several sets of g(2) data at different

excitation powers. This method was used to extract the transition rates of the three-level

model from g(2) data in the study presented in the next chapter.

For most of the g(2)(τ) data presented in this thesis Equation 96 was used to obtain

best fit values for g(2)(0) and the emission lifetimes τ1,2. When the g(2) function is plotted

over many orders of magnitude in delay time, some emitters are better described by a

four-level model which is obtained by adding another exponential term to Equation 96:

g(2)f it (τ) = 1− (1+A) exp
(
−|τ|

τ1

)
+B exp

(
−|τ|

τ2

)
+C exp

(
−|τ|

τ3

)
. (97)

Figure 27 shows the difference between fitting with three-level and four-level models: for

this emitter particularly at high excitation power, there is another timescale in the g(2)

data, indicating an additional decay path from the excited state to the ground state with a

different transition rate.

So far only the CW g(2) function has been considered; under pulsed excitation the g(2)

function is a series of peaks spaced at the repetition period of the pulsed laser, as shown in

Figure 26(b). The central peak shows the g(2)(0) value since it is the correlation between

detections from the same laser pulse on the two detectors. Comparing data for two emit-

ters in Figure 26 (a) and (b), g(2)(0) = 0.46±0.08 for pulsed excitation at 168 µW mean

power compared with g(2)(0) = 0.23±0.06 under CW excitation at 360 µW. The pulsed

g(2) function was measured at a pulse repetition rate of 20.03 MHz. This repetition rate

was a trade-off between high repetition rate / high count rate, and low repetition rate to

prevent overlap between adjacent pulses in the g(2) function, the width of each peak being

determined by the emission lifetime.
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Figure 28: Comparison of g(2)(0) values for CW excitation with the
Prometheus laser and excitation with the PicoQuant laser in CW or pulsed
modes (pulse repetition rate 20.03 MHz). Data in (a) and (b) are for two
different hBN emitters. In both cases, the g(2)(0) under pulsed excitation is
dependent on the mean excitation power and consistently higher than with
CW excitation from either laser.

For most emitters studied, the g(2)(0) value was consistently higher under pulsed exci-

tation for all mean excitation powers. This is shown in Figure 28 which compares g(2)(0)

values for two emitters under CW excitation from the Prometheus laser, the CW mode

of the PicoQuant laser, and pulsed excitation at 20.03 MHz from the PicoQuant laser.

Since the pulse length is 68 ps, the power experienced by the emitter during a pulse at

20.03 MHz is around 700× larger than the mean excitation power. The powers in Fig-

ure 28 reach hundreds of mW during a pulse, and the g(2)(0) values for the pulsed laser

show a strong dependence on excitation power. Therefore, the minimum excitation power

should be used for pulsed excitation. As discussed in the next section, the count rate col-

lected from a hBN emitter under pulsed excitation was consistently lower than under CW

excitation at the same mean power. These two factors together made it very difficult to

obtain g(2)(0)< 0.5 for pulsed excitation, because reducing the mean excitation power to

improve g(2)(0) trades off with having a high enough count rate from the emitter to make

measurements. The best pulsed measurement had g(2)(0) = 0.37± 0.02 for Emitter 6

which is studied further in the next chapter.

3.4.2 Lifetime Measurements

The fluorescence lifetime of the hBN emitters sets a limit on the maximum single

photon count rate as the average time taken to complete one photocycle. In the three-level

model shown in Figure 22, the emission lifetime is τ21.

To measure the lifetime, the pulsed laser was used with a trigger pulse sent to the Time

69



Figure 29: Lifetime measurement for a hBN emitter using pulsed excitation
at 10 MHz repetition rate and 24 µW mean power. A single exponential
fit repeated over 144 acquisitions of 100 s each gives a mean value for the
emitter lifetime τ21 = 2.7±0.1 ns.

Controller. Then a histogram was made of time delays between the trigger pulse and the

detection of a photon from the hBN emitter. Figure 29 shows the lifetime histogram mea-

sured for Emitter 6 which is studied further in the next chapter, with mean power 24 µW

and repetition rate 10 MHz. Histograms were made from 144 acquisitions each 100 s in

length. Applying a single exponential fit to each lifetime histogram produced the mean

lifetime τ21 = 2.7± 0.1 ns for this emitter. This agrees well with the range of literature

values for hBN emitters.

3.4.3 Count Rate Saturation

The count rate for each emitter is maximised by adjusting the input polarisation (with

the input HWP) and the focal spot z position (with the piezo stage z axis). The focusing

must be optimised for each emitter because the substrates are always very slightly slanted,

and also emitters could be at any height within a hBN flake. When coupling to multimode

fibre, the emission count rate is typically ∼104-106 cps. For a single mode output fibre,

emission count rates are roughly an order of magnitude lower, but with the advantage that

interference experiments can be done with single spatial modes.

hBN emitters show a saturation behaviour in their count rate I with increasing excita-

tion power P, see Fig. 30. This can be described using four parameters: maximum count

rate I∞, saturation power Psat , background fluorescence b, and constant background (dark

counts) c [85].

I =
I∞P

P+Psat
+bP+ c. (98)

The saturation behaviour of each emitter varies quite significantly, so it is important to
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Figure 30: Saturation curves for hBN single photon emitters. Six emitters
which are described in the following chapter. Measurements were all made
under CW excitation and curves are fits to the data using Equation 98.

characterise the saturation for each emitter and quote excitation powers relative to Psat for

that particular emitter.

For making intensity maps of the sample powers around 300-500 µW are typically

used. Once an emitter is being characterised, the excitation power can be reduced to im-

prove the g(2)(0) value. In the end, the optimum power is a trade-off between low g(2)(0)

and high count rate.

The count rate using pulsed excitation is lower than with CW excitation of the same

mean power. This can be understood due to the duty cycle of the excitation light decreas-

ing as the repetition rate is decreased. For our pulsed laser the pulse FWHM = 68 ps, this

is much lower than the ∼ns lifetime of hBN emission, therefore even if the peak power is

increased, emitters will rarely emit more than one photon per pulse. Fig. 31 compares the

count rate from a single emitter with the average excitation power carefully calibrated to

215 µW for both CW and pulsed excitation.

3.4.4 Spectral Filtering

The output light was filtered using an angle tuneable bandpass filter. By filtering to

pass only the peak of the emission spectrum, the g(2)(0) value was reduced. The band-

pass filter (Semrock) has a 20 nm bandwidth, with a centre wavelength tuneable from

560-630 nm by rotating the filter from 60o to normal incidence. This filter was mounted

on a motorised rotation mount (Thorlabs) to precisely control the angle. When the filter is

rotated, the beam is displaced slightly due to refraction. This effect is enough to misalign

the beam from the output fibre coupler, even when using multimode fibre with a 50 µm
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Figure 31: Comparison of single photon count rate under pulsed excitation
with different repetition rates. Count rates for one hBN emitter using the
PicoQuant laser in CW and pulsed modes with varying repetition rate, but at
a constant mean excitation power of 215 µW. Error bars show one standard
deviation of the count rate.

core diameter. A compensating plate of a high refractive index glass placed after the filter

was used to correct the beam walk-off. The plate was also mounted on a motorised rota-

tion mount rotating in the opposite direction, and its angle was calibrated to the angle of

the filter as part of the LabVIEW control VI. In the final setup the bandpass wavelength of

the filter could be scanned over the full 560-630 nm range without the beam walking-off

from the output fibre. The filter angle was calibrated to centre transmission wavelength of

the filter by measuring the transmission of a white LED through the filter on a spectrom-

eter, see Figure 32.

In experiments on hBN emitters, the first scan to find emitters was done with the filter

rotated to 90o so it was out of the beam path. In this position, only the longpass 568 nm

filter was in the path to block the excitation beam from reaching the detectors. After locat-

ing an emitter with a low g(2)(0) value, the filter was scanned to produce a rough emission

spectrum (resolution around 20 nm, limited by the filter bandwidth). Some example fil-

ter spectra from hBN emitters are shown in Figure 33. Although this spectrum does not

have the resolution to show individual peaks, i.e. the zero phonon line and phonon side-

bands, it does show the filter angle with peak transmission. The g(2)(τ) measurement was

repeated with the filter at this maximum transmission angle, which generally improved

(decreased) the g(2)(0). For example, for Emitter 6 which appears in the next chapter,

the value was g(2)(0) = 0.56±0.10 without the filter and g(2)(0) = 0.33±0.02 with the

filter at the peak transmission angle. Another example is Emitter 1, which had a value of

g(2)(0) = 0.67±0.07 without the filter and g(2)(0) = 0.45±0.08 with the filter. Even the

relatively wide 20 nm bandwidth filtering has a very significant effect on the g(2)(0) value,
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Figure 32: Calibration of spectra using angle tuneable filter. (a) Transmis-
sion spectra of the filter at different angles of incidence. Measured using a
white LED transmitted through the filter and analysed on a spectrometer.
All spectra are normalised by subtracting the LED spectrum measured with
no filter. (b) Centre transmission wavelength as a function of filter angle of
incidence. This calibration was used to convert filter angles to wavelengths
in all following hBN spectra.

and it would often make the difference in emitters passing the threshold of g(2)(0)< 0.5.

This method of filtering hBN emission brings an important improvement to the g(2)(0)

value of emitters and gives some information on the peak emission wavelength of an emit-

ter within the range 570 nm - 630 nm. This region was selected for filtering since a large

proportion of hBN emitters prepared in the same way as our samples have ZPLs in this

wavelength range. Although we could not obtain detailed spectral information about each

emitter, this setup offers a cheaper alternative to filter the emission and get some infor-

mation on the peak emission wavelength, instead of needing a single photon resolving

spectrometer, or a monochromator that can be used with single photon detectors. Later in

this thesis, I will show a custom built grating spectrometer using an EMCCD for measur-

ing spectra using very low photon counts. This was done later than all the work presented

on hBN and was also designed for a wavelength range around 780-820 nm, therefore it

could not be used with the hBN emitters shown in this section.

3.5 Photon Indistinguishability Investigated by HOM Interference

In order to combine single photons to build entangled states for sensing applications,

it was necessary to do HOM interference. Pairs of indistinguishable photons combined on

a beamsplitter demonstrate the HOM effect: both photons leave the beamsplitter by the

same output port. This output state is a two-photon N00N state, which has well known
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Figure 33: Spectra of hBN emission using angle tuneable filter. (a) Effect
of longpass filter at 568 nm. Emission spectrum for one emitter is shown
with and without the longpass filter in the optical path. (b) Emission spectra
for five different hBN emitters, showing peak emission at slightly different
wavelengths within the 570 nm - 630 nm range visible using the angle tune-
able filter.

applications in quantum sensing experiments. To see the HOM effect, the photons must

be indistinguishable in their polarisations, spectra, and arrival times on the beamsplitter.

In this section I will discuss experiments trying to observe HOM interference using our

hBN single photon emitters. This was not successful due to the problem of spectral dif-

fusion, which was being discussed in other works while these experiments were being

carried out. Eventually we moved to an alternative approach to generating N00N states

using entangled photon pairs from a PPKTP crystal, described in later chapters.

For these experiments pulsed excitation was used to control the arrival time of single

photons to within the radiative lifetime of the emitter (∼ns). A fibre based HOM inter-

ference setup was added to the output of our setup, shown in Figure 34. This part of

the setup was designed by Dr Samir Vartabi Kashanian. All the fibres were single mode

(460Y, Thorlabs) and not polarisation maintaining. The count rates coupled into the single

mode fibre were significantly lower than with multimode fibre. HOM interference from

a single photon source requires the single photon beam to be split into two optical paths

(two fibres in our case), then one of these optical paths must be delayed by one pulse pe-

riod so that photons in the two paths arrive simultaneously on a beamsplitter. In our case

the delay was implemented with an extra 10 m length of optical fibre. The relative arrival

times of photons in the two paths was measured using a trigger pulse from the laser. The

pulses in each path were overlapped to within 100 ps (the Time Controller time resolution

in high speed mode) by tuning the laser repetition frequency to 20.03 MHz, as shown in

Figure 35.
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Figure 34: Fibre based HOM interference setup for pulsed single photon
emission. The delay arm has 10 m extra fibre length to delay photons by
one pulse period at 20.03 MHz pulse repetition rate. PC: fibre polarisation
controller paddles, SPADs: single photon avalanche diodes. The polarimeter
was connected to ports A and B to check the polarisation of the direct and
delay paths, respectively.

Figure 35: Histograms of photon arrival times through the direct (blue) and
delay (red) paths in the fibre-based HOM setup. The input to the setup was
an attenuated beam from the 532 nm pulsed laser. Time delays are relative
to the trigger pulse from the pulsed laser. The pulse repetition rate of the
laser was tuned until both pulses arrived simultaneously on the detectors,
to within the time resolution of 100 ps, this happened at 20.03 MHz. The
lengths of the fibres between the HOM beamsplitter and the detectors are the
same, so we can also say the pulses arrive simultaneously on the beamsplitter.
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Figure 36: HOM measurements for two hBN emitters with pulsed excitation
at 20.03 MHz repetition rate. (a) HOM histogram (left) and zoom in on the
central peak (right). This emitter had g(2)(0) = 0.65, 12 kHz count rate and
was measured for 20 minutes. Average excitation power: 60 µW, histogram
bin width: 13 ps. (b) An emitter with g(2)(0) = 0.46, 12 kHz count rate,
measured for 20 minutes. Average excitation power: 168 µW, histogram bin
width: 108 ps. Neither measurement shows any sign of a HOM dip for this
SNR and time resolution.

After confirming photons in the two paths arrived simultaneously, the polarisation of

photons in the two paths also had to be matched. A linearly polarised calibration beam

at 532 nm (split from the Coherent, Prometheus CW laser) was coupled to the input of

the HOM setup and a polarimeter was used at each output to check the polarisation state.

The fibre polarisation control paddles in the delay path were adjusted to make the polari-

sations of the two outputs either parallel or perpendicular. This calibration was performed

before each HOM measurement on the hBN emitters to set the polarisation to parallel

(interfering) or perpendicular (non-interfering). Care was taken to move the output fibres

as little as possible when connecting them to the polarimeter, so the polarisation state of

the output would not be affected significantly.

With the setup prepared in this way, the HOM measurement is a g(2)(τ) measurement

at the two outputs of the HOM beamsplitter. The HOM dip signal is expected to be a dip
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Figure 37: Modelled HOM signals with CW excitation. (a) Model for
parallel (interfering) and perpendicular (non-interfering) polarisations with a
three level emitter using lifetimes τ1 = 1.4 ns and τ2 = 4.9 ns, coherence time
τc = 80 ns and HOM visibility V = 1. There is a narrow HOM dip seen only
for the parallel polarisation. (b) Model with coherence time τc = 1 ps, close
to the estimated coherence time for a hBN emitter at room temperature.
The HOM dip is no longer resolved since the dip width is lower than the
detector time resolution of 50 ps. The data were convolved with a Gaussian
function FWHM = 50 ps and plotted with a bin width of 13 ps to model the
time resolution of our experiment.

in the central (τ = 0) peak of the g(2)(τ) histogram, which is only visible with the polari-

sations of the interfering beams set to be parallel. This measurement was attempted with

many different emitters. The main challenge was finding an emitter with g(2)(0)< 0.5 un-

der pulsed excitation. The two best HOM measurements (parallel polarisation) are shown

in Figure 36. The first emitter had g(2)(0) = 0.65, a detected count rate of around 12 kHz

and was measured for 20 minutes. The bin width of the HOM coincidence histogram

was 13 ps (the minimum available with the Time Controller). The second emitter had

g(2)(0) = 0.46, around 12 kHz count rate and was also measured for 20 minutes. His-

togram bins were combined in this measurement to improve the SNR; the bin width on

the plot is 104 ps. Neither of these coincidence histograms show any sign of a HOM dip,

which suggests either the HOM visibility is much lower than the noise level of these mea-

surements, or the dip is much narrower than the time resolution of these measurements.

One clear limitation in these measurements was the relatively high g(2)(0) values when

using pulsed excitation. CW excitation would consistently produce lower g(2)(0) and a

higher count rate. It is also possible to make HOM measurements on a CW source using

the same setup. In the CW measurement, the HOM dip is superimposed on top of the g(2)

dip due to antibunching. The expected coincidence histogram can be modelled using the
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following expression [105]:

g(2)⊥ =
1
2

g(2)(τ)+
1
4
[
g(2)(τ +∆τ)+g(2)(τ −∆τ)

]
(99)

g(2)∥ =
1
2

g(2)(τ)+
1
4
[
g(2)(τ +∆τ)+g(2)(τ −∆τ)

](
1−V exp

(
−2|τ|

τc

))
. (100)

The function g(2)(τ) can be the three level model in Equation 96, ∆τ is the time delay

between the direct and delay paths through the HOM setup (in our measurements ∆τ =

49.9 ns), τc is the emitter correlation time, and V is the HOM visibility, defined as [105]:

VHOM(τ) =
g(2)⊥ (τ)−g(2)∥ (τ)

g(2)⊥ (τ)
. (101)

The expected CW HOM signal is shown in Figure 37 for a few example parameters.

Both plots use a three level model for g(2)(τ) with the lifetimes τ1 = 1.4 ns and τ2 =

4.9 ns as example values from fitting to data from one hBN emitter and assuming perfect

antibunching (g(2)(0) = 0). The parallel and perpendicular HOM results were convolved

with a Gaussian function with FWHM = 50 ps to model the detector time resolution, and

plotted with the Time Controller’s minimum time bin width of 13 ps. Figure 37(a) shows

the model HOM signals with τc = 80 ns, the value of the coherence time measured for

a hBN emitter at 5 K by Sontheimer et al [106]. There is a HOM dip visible for the

parallel measurement which goes below the dip due to photon antibunching. There was

no literature value available for τc at room temperature, however this can be estimated

using the spectral linewidth ∆λ [107]:

τc =
λ 2

πc∆λ
. (102)

A typical linewidth for the ZPL of hBN emitters at room temperature is ∼1 nm. The ZPL

linewidth is broadened by spectral diffusion effects, as described in [107]. This gives a

value of τc ≃ 0.4 ps for emitters in the wavelength range of our tuneable filter (570 nm -

630 nm). Compared to the 50 ps time resolution of the detectors τc is expected to be two

orders of magnitude smaller for a room temperature emitter. As shown in Figure 37(b), a

HOM dip with τc = 1 ps is not visible using our setup.

At this point it is clear that a HOM measurement is out of reach with our current setup.

There are two main problems: the g(2)(0) under pulsed excitation is consistently higher

than for CW excitation, but the time resolution of our measurement is around two orders

of magnitude higher than the expected width of the HOM dip, so it would not be visible

in the CW measurement. In order to see the HOM dip the coherence time of the emitters

must be increased to greater than the detector time resolution 50 ps. This means reducing

the ZPL linewidth, for example by using cryogenic temperatures or enclosing emitters in

a high quality factor cavity.
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Recently while preparing this thesis a HOM measurement using hBN emitters has

been achieved [108]. Fournier et al. used emitters excited at 405 nm and measured at

4 K temperature. Their emitter was a so-called ‘B centre’, a class of emitters with a ZPL

close to 436 nm which can be deterministically produced using an electron beam and have

been shown to have good spectral stability and narrow linewidth. The linewidth of their

emitter was limited by the spectrometer resolution 100 µeV (i.e. < 15 pm) and it had

g(2)(0) = 0.14± 0.03 under pulsed excitation. With these properties a corrected HOM

visibility of 0.56± 0.11 was observed. This work shows the direction for indistinguish-

able single photon emission from hBN emitters lies in using cryogenic temperatures and

fabricating a particular type of vacancy centre with an exceptionally stable spectrum such

as the B centre.

3.6 Conclusions

In this chapter I presented experiments to develop and characterise single photon

sources at room temperature using vacancy defects in hBN. The results showed repro-

ducible single photon emission (having g(2)(0) < 0.5) from emitters with a ZPL in the

range 570 nm - 630 nm, with count rates routinely up to hundreds of kHz.

The results with pulsed excitation showed consistently higher g(2)(0) values and poorer

single photon purity than CW measurements at the same average power. The count rate

under pulsed excitation was also much lower at the same average power. Using a lower

excitation power reduced the g(2)(0) value, however it also reduced the count rate. This

trade off between low g(2)(0) and having a high enough count rate to effectively make

measurements made it difficult to produce good single photon emission. Only a few emit-

ters produced g(2)(0) < 0.5 under pulsed excitation, and the only emitter found to be

below 0.4 was Emitter 6 which was used for the study on the Mandel Q parameter pre-

sented in the next chapter.

Attempts to show HOM interference between our hBN single photons and charac-

terise their indistinguishability were not successful. No HOM dip was observed with

pulsed excitation, and the g(2)(0) value was always close to 0.5 in these measurements.

The expected width of the HOM dip (assuming the room temperature spectrum of our

emitters had a similar linewidth to emitters in the literature) was estimated to be ≃ 0.4 ps.

This was around 100 times lower than the time resolution of our setup, therefore we

would not expect to resolve the HOM dip without significantly reducing the linewidth

of our emitters. HOM interference for hBN emitters at 4 K temperatures has since been

demonstrated by Fournier et al. [108].

For sensing applications, I suggested at the start of this chapter that we could use HOM
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interference to build path entangled states from our hBN single photons. The output state

from HOM interference would be a two-photon N00N state which is well established in

quantum-enhanced interferometry. Given HOM interference could not be reached with

our setup another approach would have to be taken. As stated in the introduction, another

property of single photon states is their low photon number variance, which is a form of

intensity squeezing. A source which produces a very narrow photon number distribution

could find applications in testing the single photon response of light sensitive biological

systems [35], or even in metrology applications such as single photon detector calibration

and defining the quantum candela [109]. The key property of our single photon emitters

for these kinds of application would be their intensity stability and photon number dis-

tribution. In the next chapter I will present a study of these properties of single photon

emission from hBN vacancy defects.

80



4 Photon Number Variance of hBN Single Photon Emis-
sion

4.1 Intensity Stability of Single Photon Emission

During these studies on hBN emitters, it became clear that the intensity stability of

single photon emission would be critical to any application in sensing. The count rate

from most emitters was very noisy; showing large fluctuations, step or spike-like blinking

events, and sometimes bleaching permanently and unexpectedly. If these emitters were

used as the input to a sensor, these noise events would be difficult to distinguish from real

signals.

Changes or fluctuations in the emission count rate can be described as changes in the

transition rates in the level scheme model of the emitters. Since non-radiative relaxation

to the ground state is often a phonon-assisted process, we could expect that the tempera-

ture of the emitter can be coupled to the emission stability through the phonon modes in

the hBN crystal. If so, stabilising temperature fluctuations or lowering the sample tem-

perature may improve the intensity stability of the hBN emitter. To attempt to improve

the stability of single photon emission, the setup was modified to control and stabilise the

sample temperature near ambient temperature. This section shows the effect of tempera-

ture and excitation power on the single photon emission stability and the g(2)(0) value.

The setup was modified to control the temperature of the hBN sample holder with

1 mK precision. Figure 38 shows the sample holder section. A thermo-electric cooler

(TEC) (Thorlabs) was mounted (on its cool side) to the base of the aluminium sample

holder using a thin, even layer of thermal adhesive. The hot side of the TEC was attached

to an aluminium box with heatsinks attached on several surfaces to provide a large surface

area for heat dissipation. At first, this box was placed directly on top of the piezo stage.

In the final design, a 3D printed frame in PLA (polylactic acid) was made to attach the

sample holder plate to the piezo stage directly, with the heatsink suspended. This was to

prevent thermal expansion of the heatsink moving the sample relative to the microscope

objective. When the heatsink was attached directly to the piezo stage, thermal expansion

moving the sample away from the excitation focal spot limited the time an emitter could

be studied for. The PLA frame had sufficiently low thermal conductivity that it didn’t

affect the temperature stabilisation of the sample holder, and it significantly reduced the

drift due to thermal expansion.

The complete temperature control system consisted of a temperature controller unit

(Lightwave) driving the TEC, with feedback from a negative temperature coefficient

(NTC) thermistor. The NTC thermistor was inserted into a hole drilled into the centre of
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Figure 38: Temperature stabilisation system for the hBN sample holder.

the sample holder and surrounded by thermal conduction paste. The thermistor datasheet

was used to calibrate the temperature controller by finding the Steinhart-Hart coefficients.

An autotuning procedure in the temperature controller was used to find the optimum PID

(proportional-integral-derivative) coefficients to achieve a stable temperature of the sam-

ple holder. Some trial and error was needed to find the correct size of heatsinks to reach a

stable temperature when cooling below room temperature. The final system was capable

of stabilising the sample holder temperature over the range 18-50oC with a precision of

1 mK. The lower limit for cooling was 16oC, however after a few minutes at this temper-

ature the heatsink would overheat and the setup would go into thermal runaway.

In this section I will focus on data from six hBN emitters (numbered 1-6, see Table 1)

which have raw timestamp data collected over long time periods under various excitation

power and sample temperature conditions. From the raw timestamp data, both blinking

events and g(2)(τ) functions can be studied.

4.1.1 Blinking and Bleaching

Intermittent or fluctuating fluorescence emission can be observed from single fluores-

cent molecules, quantum dots, and vacancy centres such as those in diamond and hBN.

The term ‘blinking’ is often used for this relatively long timescale ∼s emission inter-

mittency, but in some fields blinking refers to the typically much faster transitions of a

fluorescent emitter to a long lifetime shelving state [110]. In hBN both effects can be

seen, so in this thesis I refer to blinking as long timescale step or spike-like transitions of

an emitter between ‘bright’ and ‘dark’ states (i.e. states with higher and lower emission
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Emitter # Psat/µW Pmax/µW Blinking Bleaching
1 250 135 Many spikes ×
2 890 760 Few small steps ×
3 66 320 Many large steps ×
4 250 550 Occasional steps ✓

5 160 320 Many large steps ×
6 240 760 No blinking ×

Table 1: Summary of the saturation power and blinking behaviour for six
emitters discussed in this section.

count rates, respectively). There may also be more than two states that the emitter jumps

between, each having a different fluorescence count rate. I will address the dynamics of

transitions to a shelving state later in this chapter with the discussion of the Mandel Q

parameter.

Blinking has been referred to frequently in the hBN literature [111, 85]. Martinez et

al. show examples of step-like blinking, spike-like blinking, and no blinking for different

emitters in the same hBN single crystal [111]. The blinking rates for each emitter vary

significantly, showing a strong dependence of the photostability on the emitter environ-

ment within the same crystal. The suggested mechanism for this blinking is optically

induced charge state conversion, due to electrons being exchanged with other emitters.

Boll et al. show step-like blinking between three states with different photoluminescent

intensities, rather than the more typical two states (‘bright’ and ‘dark’ states) [85]. The

photon statistics are different in each blinking state: the lowest intensity state has higher

bunching, and the emission lifetimes of the three states are different. There are examples

of very similar blinking behaviours in other single photon emitters such as nitrogen va-

cancy centres [112], quantum dots [113], and single molecules [114]. As stated in Ref.

[111], it is relatively uncommon to find single photon emitters with perfect photostability,

i.e. no blinking, so the fact that a few hBN emitters do not blink is another benefit of

using hBN as a single photon emitter.

4.1.1.1 Power dependence of blinking rate
Figure 39 shows some examples of blinking events in time traces from hBN emis-

sion. These types of blinking were characteristic of the blinking events seen for Emitters

1, 3 and 5. The blinking rate for these three emitters is dependent on the excitation

power, shown in Figure 40. These three emitters were selected because they produced

many blinking events which could be analysed. To analyse the data, raw timestamps were

binned into 10 ms intervals to produce a timetrace. Blinking events were counted using

MATLAB codes which set thresholds above and below the average count rate. For spike
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Figure 39: Timetraces showing examples of hBN emitter blinking. Time-
traces are plotted in 10 ms intervals. (a) Emitter 1: rapid spike-like blinking.
(b) Emitter 3: step-like blinking from a bright to a dark state. (c) Emitter
5: step-like blinking from a dark to a bright state showing smaller amplitude
blinking events.

events (Emitter 1), the thresholds were set at 6σ above and below the mean count rate,

where σ is the standard deviation of a Poisson distribution with the same mean count rate

as the data. This was chosen to exclude the fluctuations around the mean count rate not

due to blinking events in a way which scales with the mean count rate between different

measurements. For step events (Emitters 3, 5), the data were first passed through the ‘diff’

function to give the differences between successive points. The edges of steps were then

identified as spikes in the resulting time trace in the same way, using a threshold of 8σ to

correctly exclude fluctuations in the count rate.

In Figure 40 the blinking rate generally increases with excitation power for Emitters

1, 3 and 5. However, for all three emitters the blinking rate decreases at the highest exci-

tation power. For Emitters 1 and 3 the difference is relatively small and could be because

the highest power was sampled fewer times than the next highest power: Emitter 1 had 14

samples at 50 µW and only 5 at 135 µW, and Emitter 3 had 40 samples at 250 µW and

5 at 320 µW. For Emitter 5 there were 15 samples for both 250 µW and 320 µW and the

blinking rates at 320 µW are still significantly lower. This could be a sign of a permanent

change in the blinking behaviour which happened for Emitter 5 at the highest excitation

power. This is explained further in the next section.

The blinking rate is clearly minimised by reducing the excitation power. This sug-

gests there is some blinking onset power at which an emitter starts blinking as the power

is increased. Emitter 1 blinked at all excitation powers, constraining the onset power to

< 3% of Psat . Emitter 3 has an onset power > 36%; < 76% of Psat . Emitter 5 has an onset

power > 31%; < 54% of Psat .
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Figure 40: Blinking rate as a function of power. (a) Emitter 1 (Psat =

250 µW ). (b) Emitter 3 (Psat = 66 µW ). (c) Emitter 5 (Psat = 160 µW ).
Individual blinking rates for 100 s timetraces are plotted as red dots, with
some horizontal scatter added to show points more clearly. Blue boxes show
the inter-quartile range with red lines at the median value. Mean values are
shown by black circles.
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Figure 41: Blinking rate as a function of sample temperature for Emitter
1 at 50 µW. Each green point is the blinking rate for one 100 s timetrace,
some horizontal scatter has been added to make points more visible. Blue
boxes show the inter-quartile range, and red lines show the median value.

4.1.1.2 Temperature dependence of blinking rate
As for the effect of temperature, the dependence of blinking rate on the temperature of

the sample is less clear. The largest data sets for temperature at constant excitation power

were for Emitter 1 at 50 µW (Figure 41), and Emitter 3 at 135 µW and 250 µW (Figure

42). Emitter 5 only had data for 18-26oC.

The data in Figure 41 suggest that the blinking rate decreases as sample temperature

increases for Emitter 1 at 50 µW. However, there are only two samples each at 20, 30 and

40oC. Another interpretation is that the room temperature measurement (22oC), which did

not have the temperature control running, has a higher maximum blinking rate. This could

suggest a slightly decreased blinking rate when the sample temperature is being stabilised.

For Emitter 3, Figure 42, there is no clear trend in the blinking rate with temperature.

Again, the lowest blinking rates occur at the highest sample temperatures. The room tem-

perature blinking rates (at 21.4 and 21.5oC) are not significantly higher than the blinking

rates where the temperature is stabilised. The highest mean blinking rates are for 16oC.

As stated earlier, the temperature control system was only stable for a few minutes at this

temperature, and the position of the emitter would drift causing the mean count rate to

change over time. This may have caused more points to go outside the threshold values

in the procedure for counting blinking events.

Overall, from Figures 41 and 42 the blinking rate was not reduced by stabilising the

temperature or by decreasing it slightly below room temperature, as suggested earlier.

None of the near-ambient temperature control conditions tested here suppressed the emit-
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Figure 42: Blinking rate as a function of sample temperature for Emitter
3. (a) Excitation power 135 µW. (b) Excitation power 250 µW. Each green
point is the blinking rate for one 100 s timetrace, some horizontal scatter has
been added to make points more visible. Blue boxes show the inter-quartile
range, and red lines show the median value. Mean values are shown by black
circles.

ter blinking rate in a way that would useful in practical applications of hBN single photon

emitters. Interestingly, the lowest blinking rates were obtained with the sample tempera-

ture increased to 40oC.

4.1.1.3 Emitter bleaching
Fluorescence bleaching is another effect commonly seen when studying single fluo-

rescent emitters. In the case of fluorescent molecules, bleaching can occur within seconds

and often limits their use as single photon sources [115]. In this way, hBN emitters are

particularly stable since they can be excited continuously for long time periods: tens of

hours in the experiments in this thesis.

Some emitters however did bleach suddenly after a few hours of excitation. An exam-

ple is Emitter 4, which bleached under an excitation power of 540 µW as shown in Figure

43, i.e. at a high power relative to Psat = 250 µW. The fluorescence intensity of the emitter

dropped to around 20% of the original value in around 7 s. Lowering the excitation power

or leaving the emitter for a day didn’t bring back the emission, so a permanent change

had been made to the emitter, most likely induced by high excitation power. Although it

did not often stop characterisation measurements on emitters, in any practical application

bleaching would be an issue.
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Figure 43: Fluorescence bleaching event for Emitter 4. The fluorescence
intensity from Emitter 4 under an excitation power of 540 µW dropped
permanently to approximately 20% of the original intensity. The decrease in
intensity took around 7 s.

4.1.2 Power and Temperature Dependence of g(2)(0)

Apart from the stability of the single photon count rate, the g(2)(0) value must also

be optimised. If controlling the sample temperature and excitation power can improve

(decrease) g(2)(0), this would be of major importance for practical applications of hBN

single photon emitters.

4.1.2.1 Power dependence of g(2)(0)

In the literature there are examples both of g(2)(0) being excitation power dependent,

and of no power dependence. Our emitters also showed these different behaviours, as

shown in Figure 44. For Emitter 3, the power was increased up to 4.8 times Psat and the

g(2)(0) value increased with power. In all other measurements with CW excitation, there

was no clear power dependence of g(2)(0). It should be noted that measurements on Emit-

ter 3 went up to the highest power relative to Psat , so it is possible that power dependent

effects for the other emitters would only become apparent at higher excitation powers.

For pulsed excitation, g(2)(0) showed a consistent power dependence, possibly due to

the significantly higher pump laser intensity at the peaks of laser pulses. It was difficult to

observe g(2)(0) < 0.5 because as the excitation power was decreased the count rate gen-

erally became too low to practically measure g(2)(τ) before the single photon condition

was reached.
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Figure 44: Normalised g(2)(0) or antibunching parameter as a function
of excitation power. (a) Emitter 4: g(2)(0) as a function of power at 20oC
(blue) and room temperature (RT, red), showing no clear power dependence.
(b) Emitter 3: g(2)(0) increases with power for two measurements at room
temperature (black) and one at 20oC.

4.1.2.2 Temperature dependence of g(2)(0)

As for temperature dependence of g(2)(0), only one measurement could be found in

the literature, which suggested that g(2)(0) increases with temperature when measured

from 10 K, increasing sharply by around 0.2 at 200 K [116]. Our study focused on near-

ambient temperatures since this is where hBN emitters would be operated as room tem-

perature single photon sources in technological applications.

Firstly, there was no significant difference between g(2)(0) with or without tempera-

ture stabilisation when the temperature controller was set equal to room temperature. For

almost all emitters studied there was no consistent trend in the fitting parameters of the

g(2)(τ) function when the sample temperature was varied over the range 16-40oC. How-

ever, one Emitter 6 did show a weak temperature dependence of g(2)(0) which was seen

on two temperature sweeps from 20-32oC, with control measurements at 22oC before and

after each temperature sweep (see Figure 45).

In order to distinguish between temperature or power effects and the variance of the

measurement, the repeatability of the g(2)(0) measurement was studied. The standard

deviation of six repeated g(2)(0) measurements for this particular emitter at 22oC and

250 µW power was 0.05, the range was 0.14. In comparison, the ranges of g(2)(0) values

for the two temperature series were 0.13 and 0.14. Considering this, the evidence for

temperature dependent g(2)(0) looks much weaker.

In a practical application of single photon emission, we would want to cool the emit-

ter slightly (still near room temperature) in order to improve g(2)(0). However, if the
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Figure 45: Normalised g(2)(0) as a function of temperature for Emitter 6.
The temperature was increased from 20oC to 32oC twice (black and cyan
points). Before and after each temperature sweep there was a control mea-
surement at room temperature (22oC).

improvement in g(2)(0) is not higher than the variance between measurements then we do

not see any advantage from temperature control of the sample.

4.1.2.3 Relationship between blinking and g(2)(0)

Emitter 5 showed an interesting behaviour during the temperature and power depen-

dence study, see Figure 46. The excitation power was increased repeatedly up to 2.0 times

Psat at different sample temperatures. On the third power series, at 22oC, the g(2)(0) value

suddenly increased by around 0.2. The g(2)(0) stayed at this higher value permanently un-

til the end of the measurement. At the same time, a change in the blinking behaviour was

observed. This emitter showed occasional spike-like blinking from a dark state to a bright

state. During the measurement where g(2)(0) increased, there was a step-like blinking

event after which the emitter was mostly in the bright state, occasionally dropping down

into the dark state. Therefore, there appeared to be a permanent change in both the g(2)(0)

value and the blinking behaviour. Since this happened at the highest power measured and

after several power increases this permanent change in the emitter’s behaviour may have

been power-induced.

The g(2)(0) and blinking change in Emitter 5 was only observed once, however it is

another example alongside fluorescence bleaching of apparently irreversible changes to

hBN emitters which tend to occur at higher excitation power. It is clear that the mini-

90



Figure 46: Normalised g(2)(0) for Emitter 5. The power was increased up
to 320 µW at four different temperatures. g(2)(0) values are plotted in the
order the measurements were taken. At the 22oC, 320 µW measurement (fi-
nal green point), the g(2)(0) suddenly increases by around 0.2, and remains
permanently higher even when the power and temperature are changed. This
change in g(2)(0) coincided with a change in the blinking behaviour as de-
scribed in the main text.
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mum possible excitation power should be used for a given application. Since these power

induced changes can be permanent, even briefly increasing the excitation power during

characterisation may be risky. There was no indication in our measurements that the satu-

ration measurement, which has to go above Psat to properly measure the saturation curve,

caused any change to g(2)(0).

4.2 Time-dependent Mandel Q parameter analysis for a hexagonal
boron nitride single photon source

This section deals with the single photon emission dynamics of a stable hBN emitter

which did not show any blinking events during experiments. This was Emitter 6 in the

previous section. When there are no blinking events we can ask what limits the inten-

sity stability of single photon emission over various timescales? The fluctuations in the

emission count rate without any blinking were studied using the photon number variance

as a function of integration time. A convenient measure of the variance is the Mandel Q

parameter. This section describes experiments to measure the time-dependent Mandel Q

parameter of a hBN emitter, and the measurement artefacts which must be avoided. The

following was adapted from a paper published in Optics Express [54]:

Callum Jones, Jolly Xavier, Samir Vartabi Kashanian, Minh Nguyen, Igor Aharonovich,

and Frank Vollmer, "Time-dependent Mandel Q parameter analysis for a hexagonal boron

nitride single photon source," Opt. Express 31, 10794-10804 (2023).

The supplementary material document accompanying this paper is included in Ap-

pendix A.

4.2.1 Time-dependent Mandel Q Parameter

A key component of quantum optical technologies is the single photon on demand

(SPoD) source: a source which can deliver deterministic single photon pulses at high

count rates [117, 110]. These sources may find applications in QKD [118], optical quan-

tum computing, radiometry [119, 120], or even in probing the single photon response of

biological systems [35]. For a quantum emitter such as those in hBN to be used as a

SPoD source, it must have a photon number distribution as close as possible to the sin-

gle photon number state. In other words, both multiphoton and zero photon pulses must

be suppressed so that the photon number variance is reduced. The range of timescales

over which this small photon number variance is preserved is a measure of the intensity

stability of the source. Quantifying this stability is our motivation to measure the time-

dependent Mandel Q parameter for a quantum emitter in hBN.
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The time-dependent Mandel Q parameter is defined as the variance over mean minus

one for the photon number N measured from a source during integration time T [110, 121,

122]:

Q(T ) =
⟨∆N2⟩T

⟨N⟩T
−1. (103)

⟨...⟩T denotes averaging over the integration time T. The photon number for a coherent

state follows a Poisson distribution, therefore ⟨∆N2⟩T = ⟨N⟩T and Q(T ) = 0. The ex-

pected result for a single photon source is a negative Q parameter, which indicates the

photon number distribution is narrower than a Poisson distribution and so is an indication

of intensity squeezing. An ideal single photon source detected with no losses has Q =−1.

In previous works Q(T) has been used to characterise single photon emission from

a single molecule triggered single photon source [110]. Other more varied applications

outside quantum information technologies include the use of Q(T) for single molecule

measurements, for example the detection of singlet oxygen or the fast recognition of sin-

gle dye molecules [123, 124]. We note that the abstracts in Refs. [125, 126] mention

observations of negative Q(T) on timescales of ∼10 ns for hBN emitters, therefore this

topic demands a full study.

In Ref. [54] we present the characterisation of a stable quantum emitter in hBN, fo-

cusing on the time-dependent Mandel Q parameter. With the help of data simulated by

Monte Carlo methods, we show that the effect of the detector deadtime prevented us from

observing antibunching in the Q parameter under CW excitation. However, for pulsed ex-

citation with appropriate parameters, a negative Q parameter was found when integrating

over one pulse period (100 ns). Finally, we discuss the use of Q(T) to complement other

measures in the complete characterisation of photon statistics for hBN quantum emitters.

While the absolute value of the Q parameter depends on the collection efficiency of single

photons, we propose that the crossover time at which the photon statistics change from

sub- to super-Poissonian is a robust and useful measure of the emitter’s intensity stability.

4.2.2 Methods

4.2.2.1 Emitter characterisation
Individual quantum emitters were located by scanning the sample piezo stage to pro-

duce PL maps of the surface under CW excitation, see Figure 47(b). All the following

measurements were carried out on one emitter (previously referred to as Emitter 6) which

was exceptionally stable. No blinking was observed for this emitter under any excitation

power we used over hours of measurement. The blinking we refer to here is a transition

between a bright and dark state of the emitter (common to the literature on hBN [111, 85]),
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Figure 47: (a) Photoluminescence (PL) count rate saturation curve for our
hBN quantum emitter. The saturation power Psat is 240 µW. (b) PL count
rate over time with 250 µW CW excitation showing stable emission rate.
The emitter showed no blinking events under any of the conditions studied;
this is also shown by the small error bars in the saturation curve. Inset: PL
map (photon count rate in kHz) of the quantum emitter. Scale bar: 1 µm.
(c) Second order correlation histogram for 250 µW CW excitation. A two-
exponential fit was applied to obtain g(2)(0) = 0.33±0.02, confirming single
photon emission.

not the transition to a long-lived shelving state as the term blinking is used in Ref. [110].

Emitters showing fluorescence blinking have different transition rates when they are in

their bright and dark states [85]; we expect our emitter to be free from this effect.

The emitter was characterised using the methods described in Chapter 3. The count

rate saturation, time trace of fluorescence emission and CW g(2)(τ) measurement are

shown in Figure 47.

4.2.2.2 Mandel Q parameter calculation
To measure the intensity stability of our emitter, the time-dependent Mandel Q param-

eter Q(T) was calculated according to Equation 103. This was calculated using the same

raw photon arrival times, or timestamps, used for g(2)(τ) measurements. Timestamps

were collected in acquisition times of 100 s for all measurements.

To calculate Q(T), timestamps from both detectors were combined into one array,

sorted, and split into K time windows of length T using a MATLAB script (Ref. [127]).

Unless stated otherwise, K = 108 time windows were used (or the maximum allowed by

the 100 s acquisition time for a given T) to calculate the variance and mean of the photon

number per window ⟨∆N2⟩T and ⟨N⟩T , and hence Q(T). For pulsed excitation the T values

were all multiples of the pulse repetition rate. Error bars were calculated by repeating the

analysis over many acquisitions.

This analysis was carried out on timestamps from both CW (see Section 4.2.3) and

94



pulsed (see Section 4.2.4) excitation. In addition to the procedure above, pulsed times-

tamps were also filtered using the trigger pulse from the laser, as in [110]. Only times-

tamps occurring within a window starting from the arrival of the laser pulse were kept.

The optimum filter width was found to be 5 ns; this is discussed further in the Supple-

mental Document (Appendix A).

4.2.2.3 Modelling hBN energy levels
In order to offer a comparison to experimental data for Q(T) and better understand

the photodynamics of our hBN emitter, we simulated timestamp data using Monte Carlo

methods. MATLAB scripts are given in Appendix B. We used a three-level system as a

simplified model for the emitter, defined by four transition lifetimes (see Figure 48(b)).

Although other works have found some emitters require four energy levels [85, 86], we

found that models with three and four energy levels fit our g(2)(τ) data equally well.

Timestamps were simulated based on the method detailed in [104]. In each excita-

tion cycle, the four lifetimes for each transition are drawn from exponential distributions

to determine whether a photon is emitted (is the cycle radiative or non-radiative), and

at what time. Losses are modelled by removing photon detections based on a binomial

distribution, the detections are split 50:50 into two channels to model the beamsplitter in

the HBT setup, afterpulses are added at random after some detections (see Appendix A),

and finally the detector deadtime is modelled by removing any detections less than the

deadtime (80 ns for our SPADs) after the previous detection. The resulting timestamps

are in an identical format to our experimental data, so the same data analysis for g(2)(τ)

and Q(T) was applied.

To run this simulation we needed to know appropriate transition lifetimes to set as

mean values in the Monte Carlo model. We determined these parameters by fitting the

three-level model to experimental g(2)(τ) data plotted on a log scale over the time interval

100 ps – 10 µs by a procedure described in [85]. For a three-level system, the populations

of the energy levels ρi(t) are described by a system of coupled differential equations listed

in Equations 86-88 (in Chapter 3).

The transition rates ki j are used as fitting parameters for this model, which is related

to the normalised g(2)(τ) by the solution to the differential equations for ρ2(τ), with the

initial conditions ρ1(0) = 1, ρ2,3(0) = 0 [87] by Equation 89. This model will always

have g(2)(0) = 0, therefore to include the effect of the background counts we used the

background correction Equation 93 to include σ as a fitting parameter. The model was

fitted to experimental data using the parameters ki j, which are the reciprocals of the tran-

sition lifetimes τi j represented in Figure 48(b).
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Figure 48: (a) Fitting a three-level model to g(2) data for CW excitation at
250 µW. The best fit transition lifetimes τi j are shown; lifetimes for the 540
and 760 µW are in Table 1. (b) Radiative lifetime measurement made using
pulsed excitation at 10 MHz and 24 µW mean power; data is shown for
one 100 s acquisition. Fitting a single exponential to all 144 acquisitions of
timestamp data gives a mean value of τ21 = 2.7±0.1 ns. Inset: Schematic
of the three-level model for the emitter showing the transition lifetimes τi j

between levels.

Power / µW τ12 / ns τ21 / ns τ23 / ns τ31 / ns σ

250 (1.0Psat) 415 2.70 1.93 204 0.962

540 (2.3Psat) 189 2.83 1.85 195 0.722

760 (3.2Psat) 135 2.86 1.81 125 0.811

Table 2: Fitting parameter for g(2)(τ) data.
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Figure 49: Photon number distribution for CW emission under 250 µW
excitation. Along the y axis is a histogram of photon number per time bin, as
a function of the time bin width or integration time, T. Each histogram height
is normalised to one so the widths of the distributions can be compared.
Curves indicate one standard deviation for the data (white), and a Poisson
distribution with the same mean photon number (red). The data and Poisson
deviations overlap almost exactly on this scale.

Additional constraints were needed to fit the four parameters τi j: the radiative lifetime,

τ21, was measured directly using pulsed excitation at 10 MHz and 24 µW mean power.

A single exponential fit to the lifetime curve in Figure 48(b) gave τ21 = 2.7± 0.1 ns. In

addition, the excitation lifetime τ12 was assumed to be linearly proportional to the power

(as in [85]) and measurements at 250, 540 and 760 µW were used to constrain τ12. The

best fit parameters τi j and σ at the three powers are given in Table 2, these were used as

the initial parameters for the Monte Carlo simulated timestamps.

4.2.3 Results - CW Mandel Q parameter

First, we examined the photon number distribution of our emitter for 100 s of times-

tamp data under CW excitation at 250 µW, see Figure 49. The single photon emission

follows a distribution very close to a Poisson distribution over integration times from 1 µs

to 1 ms. The photon number variance across these integration times is therefore almost

the same as that of a coherent state. Since g(2)(τ) clearly shows antibunching over ns

timescales (e.g. in Figures 47(c), 48(a)), we would expect that as the integration time

is decreased further the photon number variance will become significantly smaller than

that of a Poisson distribution. The difference between the data and Poisson distribution

variances is better visualized over several orders of magnitude in integration time using

the Mandel Q parameter Q(T).
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The Mandel Q parameter was calculated for CW excitation at three powers: 250, 540

and 760 µW, see Figure 50(a). We see that above approximately 100 ns the photon num-

ber distribution is wider than a Poisson distribution. Below this integration time there is

a small negative value; the minimum is Q = −(1.4± 0.3)× 10−3 for 540 µW, but Q(T)

approaches zero at lower T. The measurement is limited at low integration times because

the mean photon number per time bin tends to zero. At integration times << 1/I, where

I is the emitter count rate, most time bins contain no photons. This is also illustrated by

Figure 49. For 250 µW excitation, I = (34±3) kHz, therefore the average photon number

is less than one below T = 29±3 µs.

Q(T) for simulated timestamp data can reproduce a similar form to the experimental

data using the three-level Monte Carlo model described in Section 4.2.2. In Figure 50(b)

we compare the result for a two-level and three-level emitter, in which the transition life-

times for the first two levels are kept the same (red and blue points, respectively). The

transition lifetimes found in Table 2 were optimized to match the simulated Q(T) more

closely to experiment and to have the same acquisition time as the experimental data. The

final simulation parameters were: τ12 = 205 ns, τ21 = 1.60 ns, τ23 = 1.40 ns, τ31 = 420 ns,

and ηmodel = 0.248. The two-level model uses only τ12 and τ21, and ηmodel is the fraction

of photons detected in the model.

Figure 50(b) illustrates that the positive Q(T) values are a consequence of adding a

metastable shelving state. For a two-level emitter with only a ground and excited state

(red points), the antibunched photon statistics and negative Q(T) are maintained as the

integration time is increased. However, adding a shelving state (blue points) introduces a

non-radiative decay path causing fluctuations in the single photon count rate. These be-

come significant for integration times higher than the shelving state lifetime, which was

τ31 = 420 ns in this case. Detector afterpulsing was included in the simulated data in Fig-

ure 50(b) and also causes Q(T) to become more bunched for T greater than the detector

deadtime; see Appendix A.

An important factor that must be considered is the detector deadtime. When the dead-

time is artificially removed from the simulated timestamp data, Q(T) becomes positive

for all integration times, i.e. the negative value disappears (cyan points in Figure 50(b)).

The deadtime introduces an artificial antibunching effect since there is a decreased prob-

ability of two photon detections within the deadtime period of around 80 ns. Therefore,

the negative points in Figure 50(a) are likely due to the detector deadtime only, espe-

cially considering the minimum value of Q(T) occurs near 80 ns. As discussed in Refs.

[110, 128], pulsed excitation with a repetition period longer than the deadtime must be

used to avoid the deadtime artefact.
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Figure 50: (a) Experimental Mandel Q(T) for CW excitation at 250 µW.
Blue lines show mean values over 99 separate 100 s acquisition times, plus
and minus one standard deviation. Inset: zoom-in showing small negative
values for all three powers 250, 540 and 760 µW. (b) Simulated CW Mandel
Q(T) from Monte Carlo model. Blue (cyan) points were simulated using a
three-level model with (without) modelling the 80 ns detector deadtime td.
Red points are from a two-level model with the detector deadtime. Removing
the deadtime effect makes all Q(T) values more positive, and for the three-
level simulation removing the deadtime removes all negative values (inset).
Comparing the two- and three-level simulations we can see that adding a
metastable shelving state causes Q(T) to become positive at long integration
times.
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4.2.4 Results - Pulsed Mandel Q parameter

For pulsed excitation, a 10 MHz repetition rate was used so that the repetition period

of 100 ns was longer than the detector deadtime of 80 ns. A mean power of 24 µW (pulse

energy 2.4 pJ) produced a g(2)(0) value of 0.37±0.02 (Figure 51(a)) with a count rate of

2.8 kHz; increasing the power to 82 µW and 160 µW increased g(2)(0) above 0.5 (see

Appendix A). The timestamps were filtered using a trigger pulse from the laser: only

timestamps within 5 ns of the pulse start were used, i.e. approx. 2× the radiative lifetime.

Four hours of timestamps at 24 µW measured in 100 s acquisitions were used to produce

the g(2)(τ) and Q(T) plots in Figure 51.

We found a negative value at T = 100 ns of Q = −(1.4± 0.8)× 10−4. As for the

CW case, Q(T) is positive for integration times greater than 100 ns. This negative value

is very small; the magnitude of Q(T) depends on the total detection efficiency of the

measurement. The expected value for integration over one pulse period Tp is [128]:

Q(Tp) = η

(
g(2)(0)

2
−1

)
(104)

where η is the total photon detection efficiency (i.e. including both the collection ef-

ficiency of photons and the detector efficiency). From our experimental values we can

estimate η = (2±1)×10−4. To measure a more negative value and a stronger signature

of photon antibunching would require both a higher total detection efficiency and lower

g(2)(0). We note that several works on hBN emitters have achieved low g(2)(0) values

(as low as 0.07) under pulsed excitation [129, 96, 97, 92]. In our experiments we found

a difficult trade-off in the pulsed excitation power between low g(2)(0) improved by low

power and achieving a sufficiently high count rate to make our measurements.

Comparing with state-of-the-art quantum dot single photon emitters, approximate val-

ues for the Quandela source of η = 0.4, g(2)(0) = 0.02− 0.04 (only including optical

losses from the source and fibre coupling to single mode fibre, not including detection

efficiency) the single pulse Q parameter could be around Q(Tp) =−0.4 [67]. With this Q

parameter we expect the variance in a photon number measurement to be approximately

60% of the shot noise level, with count rates up to 200 MHz. By using a planar antennae

for efficient photon collection from a single molecule single photon source, Chu et al.

[130] measured a single pulse Q parameter Q(Tp) =−0.64 and intensity squeezing down

to 62% of the shot noise level. This source has a detected count rate of around 12 kHz and

the noise was measured over an interval of T = 1 ms. These examples demonstrate how

significant intensity squeezing can be seen with currently available single photon emitters,

which can reduce the noise in intensity measurements at low (∼10 kHz-100 MHz) count

rates.
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Simulated timestamp data was compared with or without the deadtime modelled in

Figure 51(c). The data were simulated with the method described in Section 4.2.4 using

the parameters: τ12 = 100 ps, τ21 = 2.70 ns, τ23 = 2.40 ns, τ31 = 420 ns, and total detec-

tion efficiency ηmodel = 2.54×10−3.

There is no significant difference in Q(T) when the deadtime is removed for pulsed

excitation at 10 MHz, and crucially, the negative value at T = 100 ns remains. Therefore,

we conclude that the experimental Q(T) data for 24 µW pulsed excitation shows evidence

of antibunching at T = 100 ns and bunching at longer integration times. As in the case

of CW excitation, the bunching is attributed to the presence of a metastable shelving state.

The lifetime of the shelving state can be estimated by fitting the model from [128] to

the pulsed excitation Q(T) data, expressed in terms of the shelving/deshelving lifetimes

τ23, τ31, the integration time T = kτrep (k is an integer number of pulse repetition periods

τrep), and the total detection efficiency η :

Q(kτrep) = η

[
τ31

τ23 + τ31

(
2−β

β
− 2(1−β )

k
1− (1−β )k

β 2

)
−1
]

(105)

where β = τrep(1/τ23 +1/τ31).

A simplified form of this model was used to fit data from the single molecule triggered

single photon source in [110] by assuming that τrep/τ23 << 1; τrep/τ31 << 1 is satisfied.

Our hBN emitter does not meet these criteria: τrep/τ23 = 0.67 and τrep/τ31 = 0.14, there-

fore we use the full expression Equation 105 to fit to our Q(T) data (shown in Figure 51(b)

inset). This yields values of τ23 = 153 ns and τ31 = 665 ns.

We note that in comparison with the single molecule fluorophore in [110] (having

τ23 = 3.85 ms and τ31 = 250 µs), the hBN emitter has a much shorter shelving state

lifetime. This makes the window of observable negative Q(T) values, between a typical

detector deadtime and the transition to Q(T )> 0, narrower and more difficult to observe.

The crossover time at which Q(T ) = 0 is a useful metric as it gives a measure of the

stability of a single photon source over long timescales. Our single photon emitter had

a crossover between 100 and 200 ns. A perfect single photon source, such as an ideal

two-level system, would have Q(T )< 0 for all integration times.

For certain applications of hBN single photon sources the photon number distribution

will be critical, for example SPoD sources or in probing the single photon response of bi-

ological systems [35]. In these cases, we need to not only confirm single photon emission

using g(2)(τ), but also quantify the single photon variance over timescales which will be

relevant to the chosen application. The Mandel Q parameter provides a measure of the
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Figure 51: (a) Second order correlation function g(2)(τ) for 10 MHz pulsed
excitation at 24 µW mean power. g(2)(0) = 0.37±0.02 was calculated using
the relative area of the peak at zero delay time. Note that the timestamp
data was filtered keeping only detections within 5 ns of the laser trigger pulse.
(b) Mandel Q(T) for pulsed excitation at 24 µW showing positive Q(T) for
integration times greater than 100 ns. Red lines show mean values +/- one
standard deviation. Inset: fit to data using Equation 105. (c) Histogram of
Q(T) values at T = 100 ns (integrating over one pulse period, blue bars).
Values are compared over 144 acquisitions of 100 s each. The mean value is
Q =−(1.4±0.8)×10−4. The purple and yellow bars are Q(T) histograms
from simulated timestamp data with comparable parameters, with/without
modelling the detector deadtime. The distribution of Q(T) does not change
when the simulated deadtime is removed, confirming that the detector dead-
time has no effect on Q(T) when the pulse repetition period is greater than
the deadtime.
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photon variance, provided that artefacts due to the detector deadtime are avoided properly.

While the absolute value of Q(T) is influenced by detection efficiency, the crossover time

at which the photon statistics transform from sub- to super-Poissonian could be taken as

a measure of long-term stability of photon antibunching from a single photon source.

Further improvements to hBN emitters for technological applications could look to

improving the stability of emission over longer timescales. Currently, photon bunch-

ing seems to be inevitable over ∼100 ns timescales due to the presence of a metastable

shelving state. However, hBN quantum emitters with different chemical structures have

significantly different energy level structures and shelving state lifetimes [79]. An emitter

with a longer shelving state lifetime and higher preference for radiative decay should offer

better single photon antibunching stability.

4.3 Conclusions

I showed in this chapter that many of the hBN emitters exhibited fluorescence blink-

ing. The blinking rate was not highly sensitive to the sample temperature near room

temperature, so stabilising the sample temperature was not effective in improving the in-

tensity stability of our emitters. Reducing the excitation power did consistently reduce

the blinking rate, so the minimum possible excitation power should be used that gives a

sufficient count rate for the measurement. Some permanent changes to emitters were also

observed: fluorescence bleaching and a permanent increase in the g(2)(0) value. These

changes occurred under relatively high excitation power, showing that using high excita-

tion powers during characterisation can be risky since the properties of the emitter can be

permanently changed.

A few rare hBN emitters did not show any blinking behaviour whatsoever, in particu-

lar Emitter 6. In the publication included in this chapter we measured the time-dependent

Mandel Q parameter for Emitter 6. The photon number distribution for this emitter

showed antibunching only below integration times of 100-200 ns. An antibunched pho-

ton number distribution over longer timescales could be achieved by improving the g(2)(0)

value and total collection efficiency of photons. For now, we are far from having a very

narrow photon number distribution over the timescales of a useful measurement for ex-

ploiting intensity squeezing, in comparison to sources with Q parameters down to -0.64

[130]. However, we have shown how the Mandel Q parameter can be a useful characteri-

sation method to find the crossover time at which the photon statistics of a single photon

source change from antibunched to bunched.

Overall, the previous two chapters have highlighted some challenges in using single

photon emitters in hBN for quantum sensing applications. These are: achieving highly
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indistinguishable single photons to do high visibility HOM interference and generate en-

tangled states, fluorescence blinking and permanent damage induced in emitters by high

excitation power, and producing single photon states with a very narrow photon number

distribution for applications that demand intensity squeezing. In this thesis I have fo-

cused on the single photon emission from hBN vacancy defects, while an emerging area

of interest is on defects with magnetically addressable spins. These will provide another

approach to hBN quantum sensors for magnetic fields, or other physical quantities which

can be coupled to the spin states.

In the next part of this thesis I will move onto a different approach to generating quan-

tum optical states for sensing: producing entangled photon pairs using a nonlinear optical

interaction in a PPKTP crystal.
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Part III - Generating Entangled Photon Pairs
Towards Applications in Quantum-Enhanced
Biosensing using Tapered Fibres and WGM
Interferometers
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5 Entangled Photon Pairs from a PPKTP Sagnac Loop

5.1 Introduction

To develop sensing schemes using entangled photon states, we need a source of pho-

ton pairs which can be separated into two modes and which are generated in an entangled

state of some degree of freedom, such as polarisation. Entangled photon pairs should be

generated with high fidelity and with high photon pair generation efficiency, i.e. as high

as possible a photon pair rate per unit pump power. When the photon pairs are projected

into a basis in which they can interfere, they should also be degenerate in wavelength

and indistinguishable, to give a high HOM interference visibility and efficiently produce

N00N states. For sensing applications with an optical resonator such as a WGM micro-

sphere, the ideal entangled photon source would have a spectral linewidth on the order

of hundreds of MHz or lower and provide some wavelength tuning. A narrow spectral

width means a broader temporal distribution and hence lower time resolution. However,

this would not be an issue for WGM measurements since the sensing time resolution is

not limited by the Fourier transform of the WGM spectral width. The highest time resolu-

tion achieved using a laser locked to the resonance wavelength was ∼ µs [33], while the

limit due to the resonance width is ∼ns. A source with these properties could be coupled

directly to a WGM allowing the resonance wavelength shift of a WGM sensor to be read

out using a quantum sensing scheme.

There are several approaches to generating entangled photon pairs: they can be pro-

duced by nonlinear optical processes, two-photon emission from trapped atoms [131],

cascaded decay of biexcitons in quantum dots [132], and other emerging material sys-

tems. The nonlinear optics approach is most commonly using second order nonlinearity

in a suitable nonlinear crystal to do spontaneous parametric down-conversion (SPDC).

However, it is also possible to use third order nonlinearities to generate entangled pho-

ton pairs by four-wave mixing (FWM) [133]. For our experiments developing a entangled

photon pair source for quantum sensing we chose second order nonlinearity and the SPDC

process.

In this section I will present work on building and characterising a polarisation en-

tangled photon pair source using a periodically-poled KTP (PPKTP) nonlinear crystal in

a Sagnac loop configuration. PPKTP has a high second order susceptibility, producing

an efficient SPDC process. The PPKTP Sagnac loop is now a well established setup for

generating polarisation entangled photon pairs with a high pair generation rate per unit

pump power [134]. We chose this as a high brightness source of photon pairs which can

be separated into two output modes even when the photons are degenerate in wavelength

using their orthogonal polarisations. This kind of source is ideal for two-photon interfer-

ence and building two-photon N00N states which can be applied to sensing schemes.
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The following sections provide more information on the SPDC process for generating

photon pairs, and a summary of some previous experiments, particularly those involved

in developing the PPKTP Sagnac loop experiment. Then I will present our experimen-

tal setup and present results characterising the entangled photon states: emission spectra

from the PPKTP crystal, quantum state tomography to determine the state fidelity, and

HOM interference.

5.1.1 Spontaneous Parametric Down-Conversion

Nonlinear optics is used as a method for producing photon pairs because it allows

optical fields at different frequencies to be coupled to each other - this is required to

convert one high energy photon into two lower energy photons. This coupling between

optical fields is possible through the polarisation response of a suitable medium, usually a

crystal with a carefully chosen structure. The electrons in the medium act like an array of

antennae, absorbing and re-radiating optical fields. The polarisation response of the bulk

medium can be expanded in powers of the incident E-field [135]:

Pi = ε0χ
(1)Ei + ε0χ

(2)
i jk E jEk + ε0χ

(3)
ilmnElEmEn... (106)

where χ(n) is the nth order susceptibility, i, j,k, l,m,n = 1,2,3 are indices for fields along

the three Cartesian axes, and repeated indices indicate a sum. The E-fields in each higher

order term are allowed to be at different frequencies than the incident field. The first or-

der term is the usual linear response of the medium, but all higher order terms represent

nonlinear processes in which the incident field is converted into multiple output fields at

different frequencies. The higher order susceptibilities of most materials are extremely

small, and since the nonlinear terms depend on powers of the E-field, nonlinear effects

are highly power dependent. At sufficiently high powers and in a medium with a high

nonlinear susceptibility, nonlinear processes become significant and can be used for opti-

cal frequency conversion.

SPDC is the nonlinear conversion of a pump field into two signal and idler fields at

lower frequencies. The process only takes place efficiently in a nonlinear medium with a

sufficiently large second order susceptibility χ(2), and provided the phase matching con-

ditions on energy and momentum conservation are met. Depending on the polarisations

of the pump, signal and idler fields there are different types of SPDC. For Type-I SPDC,

the signal and idler modes have parallel polarisations, and are orthogonally polarised to

the pump mode. The energy and momentum conservation conditions are [135]:

ωp = ωs +ωi (107)

k⃗p(ne
p) = k⃗s(no

s )+ k⃗i(no
i ). (108)
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Here p,s, i label pump, signal and idler modes and ne, no are the extraordinary and or-

dinary refractive indices of the nonlinear crystal medium. This condition can be met in

KTP since it is a negatively birefringent medium (ne − no < 0) and the input and output

modes experience different refractive indices.

In contrast, Type-II SPDC produces orthogonally polarised signal and idler output

modes. Modern Type-II SPDC generation commonly uses periodically poled nonlin-

ear crystals, such as potassium titanyl phosphate (PPKTP). The nonlinearity of a crystal

depends on the orientation of the pump, signal and idler E-field vectors relative to the

principal axes of the crystal. In general the susceptibility χ(2) is a tensor, which can be

simplified for a given crystal structure to a set of nonlinear coefficients di j [135]. For a

given crystal geometry and polarisations of the pump, signal and idler fields, only one of

these di j are needed to describe the strength of the nonlinear response. PPKTP is chosen

for its high d24 coefficient [136].

Periodic poling is a process in which voltage pulses of several kV/mm are applied

across a nonlinear crystal by a periodic pattern of electrodes [137]. This permanently

reverses the crystal polarity in a periodic pattern and tuning the poling period Λ provides

an additional degree of freedom for achieving nonlinear phase matching. This technique,

called ‘quasi-phase matching’, allows nonlinear interactions not otherwise possible with

conventional birefringent phase matching and in particular allows the highest nonlinear

coefficients of a given crystal to be accessed. The phase matching conditions for Type-II

quasi-phase matching are [135]:

ωp = ωs +ωi (109)

k⃗p(ne
p) = k⃗s(ne

s)+ k⃗i(no
i )+

2π

Λ
x̂. (110)

Periodic poling also makes it possible to achieve phase matching with the pump, sig-

nal and idler modes all polarised along the same crystal axis in a process called Type-0

phase matching [136, 138].

In experiment the temperature of the crystal can be tuned in order to change the signal

and idler wavelengths which meet the energy conservation condition, and also the angles

of emission from the optic axis which meet the momentum conservation condition. At

one critical temperature the signal and idler modes are degenerate in wavelength. This

temperature dependence changes the phase matching conditions because the refractive

indices of the crystal are temperature dependent and change at different rates. The refrac-

tive index is described by the Sellmeier equations, with parameters which have been found

empirically for different nonlinear materials, including PPKTP. For a PPKTP crystal cut

orthogonal to the principal crystal axes, the refractive indices in the y and z directions
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ny

A1 A2 A3/µm2 A4/µm−2

2.09930 0.922683 0.0467695 0.0138404

nz

A B C/µm2 D E/µm2 F/µm−2

2.12725 1.18431 5.14852 ×10−2 0.6603 100.00507 9.68956 ×10−3

Table 3: Sellmeier coefficients for PPKTP determined in Refs. [139] and
[140].

(perpendicular to the optic axis) are given by the Sellmeier relations:

n2
y(λ ) = A1 +

A2

1−A3/λ 2 −A4λ
2 (111)

n2
z (λ ) = A+

B
1−C/λ 2 +

D
1−E/λ 2 −Fλ

2. (112)

Here λ is in µm, and the coefficients for PPKTP are determined empirically in Refs.

[139] and [140], shown in Table 3.

The temperature dependence comes in through the thermal expansion coefficient of

the crystal and the temperature dependent refractive index. Thermal expansion affects the

poling period Λ: the crystal length L at temperature T is [141]:

L(T ) = L(25◦C)[1+α(T −25◦C)+β (T −25◦C)2] (113)

where α = (6.7±0.7)×10−6◦C−1 and β = (11±2)×10−9◦C−2 from Ref. [141]. The

refractive index change due to temperature is given by:

∆n(λ ,T ) = n0(λ )(T −25◦C)+n1(λ )(T −25◦C)2 (114)

ni(λ ) =
3

∑
j=0

ai j

λ j . (115)

The coefficients ai j are again determined empirically in Ref. [141] and are shown in Table

4.

Bringing everything together, the temperature dependent refractive indices are the val-

ues at 25◦C given by the Sellmeier equations, plus the refractive index change at tempera-

ture T . The poling period also changes with thermal expansion. The final expressions are:

ny(λ ,T ) =
(

A1 +
A2

1−A3/λ 2 −A4λ
2
)1

2

+

 3

∑
j=0

a(y)0 j

λ j (T −25◦C)+
3

∑
j=0

a(y)1 j

λ j (T −25◦C)2

 (116)
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∆ny

ai0 ai1 ai2 ai3

i = 0 (10−6) 6.2897 6.3061 -6.0629 2.6486

i = 1 (10−8) -0.14445 2.2244 -3.5770 1.3470

∆nz

ai0 ai1 ai2 ai3

i = 0 (10−6) 9.9587 9.9228 -8.9603 4.1010

i = 1 (10−8) -1.1882 10.459 -9.8136 3.1481

Table 4: Temperature dependence coefficients for the refractive index of
PPKTP determined in Ref. [141].

nz(λ ,T ) =
(

A+
B

1−C/λ 2 +
D

1−E/λ 2 −Fλ
2
)1

2

+

 3

∑
j=0

a(z)0 j

λ j (T −25◦C)+
3

∑
j=0

a(z)1 j

λ j (T −25◦C)2

 (117)

Λ(T ) = Λ(25◦C)[1+α(T −25◦C)+β (T −25◦C)2]. (118)

Another factor to consider is the spatial profile of the signal and idler modes at the out-

put side of the nonlinear crystal. We have to decide where to collect the signal and idler

photons to get the desired output state. There are two main cases: collinear, in which

the signal and idler mode wavevectors are both along the optic axis and have zero diver-

gence angle, or non-collinear, in which signal and idler photons are emitted at a non-zero

angle from the optic axis, resulting in a cone-shaped spatial mode. The emission cones

for signal and idler photons overlap at small divergence angles, however in the strongly

non-collinear case the emission cones can be at an angle to the optic axis.

The simplest case to calculate is the collinear case, since all wavevectors are along

the optic axis and the phase matching condition reduces to a scalar equation. Assuming

collinear emission, we can calculate the crystal temperature at which the signal and idler

modes are degenerate, Tdeg. At this temperature, the signal and idler modes on the optic

axis are degenerate and become non-degenerate away from the optic axis. If the temper-

ature is now decreased below Tdeg, the degenerate condition is met at an increasing angle

from the optic axis. If the emission was imaged at the output of the crystal through a

narrowband (few nm) interference filter, for example on an EMCCD, then the emission

profile would change from a single peaked distribution on the optic axis at Tdeg to a ring
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with increasing radius as the temperature is decreased. Note that without spectrally filter-

ing the emission the ring shape will be obscured by non-degenerate photon pairs which

meet their phase matching conditions at different angles. As described in the next section,

only the collinear case will be relevant to the experimental setup developed in this thesis.

So far this description has all been in terms of classical nonlinear optics. To describe

entangled photon pair generation we consider the case where the pump power is relatively

low. Interpreting the SPDC process in terms of photons, down-conversion is the conver-

sion of one high energy pump photon into a pair of lower energy signal and idler photons.

These signal and idler photons must have energies that sum to the energy of the origi-

nal pump photon, and their transverse momenta must be equal and opposite to conserve

momentum. This gives rise to the phase matching conditions. The output state from the

SPDC process can be written in the photon number basis as:

|ψSPDC⟩=
√

1− ε|0⟩s|0⟩i +
√

ε|1⟩s|1⟩i (119)

where |⟩s,i are the signal and idler modes, and ε ≪ 1. In other words, the output state is a

vacuum state except for a small fraction of pump photons which are converted into a pair

of single photons in the signal and idler modes. This occurs with a small probability ε .

The SPDC process is termed ‘spontaneous’ parametric down-conversion because the

signal and idler modes are initially (at the input side of the nonlinear crystal) in the vac-

uum state. The annihilation of a pump photon and the creation of signal and idler photons

in the nonlinear medium is a spontaneous process which is a consequence of the signal

and idler vacuum states having zero-point energy fluctuations. The more general case of

parametric down-conversion has input seed fields in the signal and idler modes, so the

nonlinear process occurs between optical modes that are already populated with photons.

Another case is the optical parametric oscillator (OPO), in which the nonlinear medium

is enclosed in an optical cavity so that the input signal and idler modes at both ends of

the crystal are already populated with photons. These schemes can be used to produce

entangled photon pair sources and are also widely used for sources of squeezed light. The

next section will provide more details on the experimental setup required to produce an

entangled photon state from a PPKTP crystal by Type-II SPDC.

5.1.2 Entangled Photon Sources using Type-II SPDC

A number of different experimental schemes have been devised for extracting entan-

gled photon pairs from Type-II SPDC in χ(2) crystals. Since the signal and idler modes

have orthogonal polarisations it is possible to make a polarisation entangled state. The

signal and idler modes must be separated into two spatial modes such that each output

mode has an equal probability of containing a horizontally (H) or vertically (V) polarised
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photon from each photon pair. The photons must also be temporally indistinguishable, i.e.

there must be no time delay between H and V photons. The birefringence of the PPKTP

crystal immediately presents a problem, because H and V polarised photons experience

different refractive indices which introduces a time delay between them, and this must be

compensated somehow. For HOM interference, the photon pairs must also be spectrally

indistinguishable to achieve high interference visibility, for which we must tune the SPDC

phase matching conditions to the degenerate condition ωs = ωi = ωp/2 using the crystal

temperature.

Before describing different experimental schemes for producing polarisation entan-

gled photon pairs, we need metrics for comparing the performance of different entangled

photon sources. Common figures of merit for polarisation entangled states are i. the two-

photon HOM interference visibility, ii. coincidence visibility as a function of polarisation

analyser angle, iii. quantum state fidelity to the target entangled state, and iv. entangle-

ment measures such as the tangle or concurrence. Note there are two different visibilities

discussed in the literature: the HOM visibility is the usual two-photon interference visibil-

ity, the coincidence visibility is a different quantity which does not involve interference.

When the polarisation analyser in one output beam is rotated, the coincidence rate of pho-

ton pairs will change sinusoidally. The visibility of these coincidence rate fringes is the

coincidence (or correlation) visibility discussed in many papers.

As described in the previous section, the output modes from SPDC may be emitted in

either a collinear or non-collinear configuration. In the non-collinear case, output photons

are emitted in cones at an angle to the optic axis depending on their momentum. The

signal and idler modes can be collected from two points diametrically opposite each other

on the output cones since these photons have opposite transverse momenta and orthog-

onal polarisations. This method allows signal and idler modes to be separated spatially,

however has the disadvantage of only using a fraction of the down-converted photons.

Early experiments to produce polarisation entangled states typically used beta-barium

borate (BBO) crystals with a Type-II SPDC process in which the signal and idler emission

cones are at different angles from the optic axis [142]. This produces two rings at a given

wavelength, and photons must be collected from the two points where the rings over-

lap in order to obtain the polarisation entangled state. Experiments using a non-collinear

scheme with PPKTP crystals have demonstrated high quality polarisation-entangled states

and high visibility two-photon interference [143, 144, 145]. Jeong et al. [144] achieved a

photon pair detection rate of 7 kHz mW−1 (91 kHz mW−1) and HOM interference visi-

bility 97.8% (93.6%) for single mode fibre (multimode fibre) coupled output modes. This

experiment showed that a broadband multimode diode laser could be used as the pump

laser and still demonstrate two-photon interference. The temporal distinguishability of
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photon pairs introduced by the crystal birefringence is compensated using a ‘universal

Bell state synthesizer’ scheme, using a prism delay line, a half-waveplate (HWP) in one

output mode, and combining the two output modes on a polarising beamsplitter (PBS).

Lee et al. [145] achieved a pair detection rate of 4.2 kHz mW−1 and HOM interference

visibilities >96%, depending on the pump power. This work also uses a delay line, HWP,

and PBS to compensate for the temporal distinguishability between photon pairs.

Using a collinear configuration, signal and idler photons are emitted along the pump

beam axis. This allows all the generated photons to be collected, however, the signal and

idler modes can no longer be separated spatially. Kuklewicz et al. [146] used a 50:50

beamsplitter to separate the signal and idler photons, with a four detector setup to post-

select photon pairs. However, this approach loses half of the photon pairs which are not

split into the two output modes on the beamsplitter.

One solution to the problem of separating signal and idler modes in the collinear con-

figuration is to put the crystal in a polarising Sagnac loop [147, 148, 134, 149]. The crystal

is pumped from both sides with H-polarised pump beams to produce H and V polarised

photon pairs travelling clockwise and anticlockwise. A HWP inside the loop rotates the

clockwise photon pair from H, V to V, H. A PBS then separates each photon pair into

two output modes, with each output mode containing either H or V polarised photons de-

pending on whether they propagated clockwise or anticlockwise around the loop. In this

scheme, the temporal distinguishability between photon pairs is erased because clock-

wise and anticlockwise propagating photon pairs have opposite temporal delays due to

the HWP in the loop. In the output modes there is still a time delay between the photons

in each pair, but this delay does not provide any information on the polarisation state of

the photons.

In Ref. [134], Fedrizzi et al. demonstrate a wavelength tuneable and narrowband

emission version of the Sagnac loop scheme. Using a polarising beamsplitter, the clock-

wise and counterclockwise propagating signal and idler modes in the Sagnac loop can be

separated into signal and idler modes at the output, which are in a polarisation entangled

state. This setup demonstrates a high photon pair generation rate of 273 kHz mW−1nm−1

(82 kHz mW−1nm−1 detected) coupled into single mode fibres, and high coincidence vis-

ibility over a wide tuning range of signal and idler wavelengths (>97.5% over ∼50 nm). It

is also possible to use the Sagnac loop setup with non-collinear phase matching, as shown

in Ref. [138] where Type-0 quasi-phase matching is used to make co-polarised photon

pairs.

These experiments on the Sagnac loop setup are the basis for our entangled photon pair

source, which I will describe in the next section. We also use Type-II SPDC in a 25 mm
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long PPKTP crystal with a 405 nm pump beam to produce output modes at 810 nm which

are tuneable in wavelength. The polarising Sagnac loop setup is particularly well suited to

our proposed application to sensing since it is a relatively straightforward setup to develop

from scratch (no active stabilisation of optical cavities for example), the signal and idler

spectral widths are relatively narrow due to the use of a long crystal, the pair generation

rate is high, it is possible to do HOM interference and make two-photon N00N states with

degenerate signal and idler photons, and the wide wavelength tuning would be useful for

any application involving coupling to a WGM resonator.

Strictly speaking, we do not require a polarisation entangled photon pair state to make

N00N states for sensing via HOM interference; a source of indistinguishable photon pairs

which can be interfered on a beamsplitter would be sufficient. We developed the Sagnac

source firstly to compensate the temporal delay between H and V polarised photons, as an

alternative to using a delay line for one polarisation (as discussed above). Secondly, we

were able to optimise the purity of the polarisation entangled state before proceeding to

HOM interference to increase confidence in our results and in order to develop the meth-

ods for characterising quantum optical states in our lab.

5.2 Experimental Setup - Sagnac Loop

Polarisation entangled photon pairs were produced using Type-II SPDC with a 25 mm

PPKTP crystal in a Sagnac loop setup. A schematic of the setup is shown in Figure 52.

Professor Jolly Xavier designed the setup and sourced all the parts. I built the setup and

made any necessary changes as it developed with guidance from Professor Jolly Xavier.

Some stages of development are shown in Figure 53.

5.2.1 Description of the Setup

The pump laser is a 405 nm tuneable external cavity diode laser (Toptica) with a

linewidth ∼ 100 kHz and a power of 20-25 mW after passing through a single mode po-

larisation maintaining fibre, which also cleans the spatial mode. An optical isolator was

added at the input (> 32 dB isolation) because when the Sagnac loop is properly aligned,

the pump beam comes back down the optic axis to the laser. The laser power is controlled

with a HWP / PBS combination, and the polarisation state is set before each measurement

using a QWP and HWP, and measured with a polarimeter. The polarisation angle should

be 45◦ to split the pump beam 50:50 on the Sagnac loop PBS, and the ellipticity is adjusted

to change the phase between the two parts of the polarisation entangled state at the output.

The Sagnac loop itself is a triangular loop in the optical path made by a PBS and
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Figure 52: The PPKTP Sagnac loop setup. Input beam is at 405 nm deliv-
ered to the setup with a polarisation maintaining single mode fibre. Outputs
1 and 2 are collected into non-polarisation maintaining single mode fibre.
Components in the Sagnac loop are coated with dual-band antireflection
coatings for 405 nm and 810 nm. HWP: half waveplate, QWP: quarter
waveplate, L1,2: f = 300 mm lenses, DM: dichroic mirror, PBS: polaris-
ing beamsplitter, D-PBS: dual-wavelength polarising beamsplitter, D-HWP:
dual-wavelength half waveplate.
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two mirrors. The PBS is a custom-made component which is dual-band anti-reflection

coated for 405 nm and 810 nm. The PPKTP crystal (1×2×25 mm3, Raicol Crystals)

inside a temperature controlled oven is placed inside the Sagnac loop. The pump beam

is focused into the centre of the crystal by lens L1 (plano-convex, f = 300 mm). A HWP

in the loop (also dual-band anti-reflection coated for 405 nm and 810 nm) is set to rotate

polarisations H→V and V→H. In the input beam there is a dichroic mirror (DM) (trans-

mitting < 650 nm) such that the pump beam is transmitted but the down-converted modes

at 810 nm will be reflected. When the pump beam enters the loop there are two modes:

a clockwise H polarised mode and an anticlockwise V polarised mode. These two modes

propagate as follows:

Clockwise mode. The H polarised pump beam produces H and V polarised signal and

idler modes (Hs, Vi), respectively. These are rotated by the HWP to Vs, Hi. The signal

mode is reflected at the PBS and DM to enter output 2. The idler mode is transmitted at

the PBS to enter output mode 1.

Anticlockwise mode. The V polarised pump beam is rotated to H polarisation by the

HWP. This produces signal and idler modes Vs, Hi. The signal mode is reflected at the

PBS to enter output mode 1. The idler mode is transmitted at the PBS and reflected by

the DM to enter output mode 2.

Therefore output mode 1 contains only signal photons of either H or V polarisation,

and output mode 2 contains only idler mode photons of either H or V polarisation. We

also see that the remaining pump beams in both the clockwise and anticlockwise modes

pass back into the input beam path and are blocked by the optical isolator. Since the PBS

and DM do not have a perfect extinction ratios, some of the pump beam enters outputs 1

and 2 and must be blocked by notch filters for 405 nm (OD > 6, Semrock).

The output modes are collected by two plano-convex lenses, L2 (f = 300 mm) and

zoom fibre collimators to couple the modes into two single mode optical fibres. Each out-

put beam has a polarisation analyser consisting of a QWP, HWP, and linear polariser. Out-

put mode 2 has a delay line made with two anti-reflection coated corner prisms mounted

on a translation stage. This is to control the optical path delay between the two modes

which is essential for HOM interference. A 1D piezo stage was added to the delay line to

enable fine control.

The output fibres are connected to two fibre coupled single photon detectors. The

detectors for this setup are the same single photon avalanche diodes (SPADs) used for

the hBN setup. At the expected down-conversion wavelength of 810 nm their detection

efficiency is approximately 15%. The ID900 Time Controller is used for time-to-digital
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Figure 53: Stages of developing the PPKTP setup. (a) Basic setup to
collect signal and idler modes into multimode fibres. (b) Addition of lenses
(L2) to the collection optics and polarisation analysers (QWP, HWP, linear
polariser) in each output beam. (c) The final setup including a delay line for
HOM interference measurements.
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Figure 54: The final PPKTP setup showing the beam paths and compo-
nents. Components in the Sagnac loop are coated with dual-band antireflec-
tion coatings for 405 nm and 810 nm. HWP: half waveplate, QWP: quarter
waveplate, L1,2: f = 300 mm lenses, DM: dichroic mirror, PBS: polaris-
ing beamsplitter, D-PBS: dual-wavelength polarising beamsplitter, D-HWP:
dual-wavelength half waveplate, BP400: bandpass filter at 400 nm. There
are also notch filters blocking 405 nm before the two output fibre couplers
to prevent any remaining pump beam going to the detectors.
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conversion of photon detections and photon correlation measurements.

A photo of the final setup with the beam paths and components marked is shown in

Figure 54. The alignment beam is from an 810 nm laser and was added for experiments

on HOM interference which are discussed later in this chapter. A flip mirror in the Sagnac

loop is used to direct the alignment beam onto outputs 1 and 2 to test the interference vis-

ibility at 810 nm.

5.2.2 Beam Profiles and Focusing Conditions

Efficient SPDC in the collinear configuration requires the optimum focusing condi-

tions for the pump beam and the collection optics. Fedrizzi et al. have made a thorough

investigation of the optimum focusing conditions for a PPKTP crystal in the Sagnac loop

setup [134]. For our 25 mm long crystal the pump beam should have a waist radius of

26 µm to maximise the efficiency of producing photon pairs. The optimum beam waist

radius is a trade-off between having a high optical intensity at the focus to increase the

SPDC efficiency, and using a larger volume of the crystal for the SPDC process.

The optics collecting the signal and idler beams should also be focused on the middle

of the PPKTP crystal. The focusing conditions of the output beams can be found by prop-

agating a laser beam at 810 nm back through the output paths and into the crystal. These

output beams have an optimum waist radius of 32 µm for maximum collection efficiency

[134].

The beam profiles of the pump beam and 810 nm beams back-propagated through

output modes 1 and 2 were measured using a 2f imaging setup with a CCD camera. This

is shown in Figure 54. By removing one mirror from the Sagnac loop and moving the PP-

KTP crystal out of the beam path, the image plane of the beam profiler is at the position

of the crystal and can be moved 26 mm with a translation stage. The intensity profile of

the beam on the CCD is fitted using a 2D Gaussian function at each z position along the

beam path to find the beam radius w(z).

The beam profile is then fitted with the function:

w(z) = wo

√
1+

(z− zo)
2

z2
R

(120)

where wo is the beam waist radius, zo is the z-position of the beam waist, and zR is the

Rayleigh range. For each beam the beam waist position was adjusted by moving the

f = 300 mm lens (L1 or L2 in Figure 54), and the beam waist radius by changing the

beam size using the zoom fibre collimators. The beams produced from the single mode
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Figure 55: Beam profiles in the PPKTP crystal. (a) CCD images of
the 405 nm and 810 nm beams showing a symmetric Gaussian shape. (b)
Beam profiles against translation distance of the beam profiler, fitted with
a Gaussian beam profile. Blue points are the beam radii of the pump beam
(405 nm), and red and purple for the output beams (810 nm). The radii
along the x direction are the circles and solid lines, y radii are the squares
and dashed lines. There is a small amount of ellipticity for the pump beam:
the difference between x and y beam radii is < 8%.
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optical fibres were very clean, however the optical isolator introduced some distortion to

the pump beam which had to be corrected by slightly moving the isolator position until

the intensity profile was Gaussian. The beam profiles for each beam along the optic axis z

are shown in Figure 55. The final beam waist radii were wx = 24.6 µm and wy = 26.6 µm

for the pump beam, wx = 32.1 µm and wy = 31.1 µm for output 1, and wx = 32.4 µm

and wy = 33.1 µm for output 2. These radii are close to the target values of 26 µm for the

pump beam and 32 µm for the output beams.

The beam profiles measured in free space are not the same as the profiles when the

PPKTP crystal is placed in the optical path due to the high refractive index of the crys-

tal. In a dielectric medium, the focal position is displaced in the propagation direction

as described by Nemoto [150]. However, the beam waist radius is unchanged so that our

measured beam waist radii and the target values from [134] are the same in free space and

inside the PPKTP crystal.

5.2.3 Custom Grating Spectrometer using EMCCD

The count rate of the down-converted light from our crystal was far below the noise

level of our optical spectrum analyser (OSA). To measure the spectra of the output modes,

we built a custom fibre-coupled spectrometer using a diffraction grating and an electron

multiplying charge coupled device (EMCCD) camera (Andor iXon Ultra 888, Oxford In-

struments). The setup is shown in Figure 56. I worked together with Dr Samir Vartabi

Kashanian to design and build the spectrometer.

A beam from a single mode fibre is collimated onto a diffraction grating and the first

order diffracted beam is focused onto the EMCCD pixel array. We selected a diffraction

grating with 1200 lines mm−1 and a blaze wavelength of 750 nm, to give high diffraction

efficiency at the target wavelength 810 nm. The maximum possible beam width was used

to fill a large area of the grating.

The spectrometer was calibrated using a highly attenuated beam from a tuneable ex-

ternal cavity diode laser at 765-815 nm. The laser beam was focused onto one EMCCD

pixel with an f = 30 mm lens. As the laser wavelength is tuned, the focused beam scans

across the EMCCD sensor because the diffraction grating angle is fixed. By measuring

the wavelength precisely using a wavemeter, the EMCCD pixel position was calibrated to

wavelength with a precision of ∼0.1 nm. The pixel-wavelength relation was very close to

linear over a range of 800-815 nm; an example calibration plot is shown in Figure 57.
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Figure 56: Diffraction grating spectrometer using EMCCD. A beam from
a single mode optical fibre (in the final design this was not polarisation
maintaining) is collimated onto a diffraction grating (1200 lines mm−1, blaze
wavelength 750 nm) and the first order diffracted beam is focused onto an
EMCCD pixel array. ND: variable neutral density filter, Lens: f = 30 mm.

Figure 57: Calibration plot of EMCCD pixel number X to laser wavelength
λ . The calibration was done with a highly attenuated tuneable laser over
the range 800-815 nm. Inset: EMCCD image of the laser beam showing it
is focused onto one pixel by the f = 30 mm lens.
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Figure 58: Count rates against pump power using multimode fibre to collect
the output modes. Black and red solid lines are the count rates on detectors 1
and 2, dashed lines are the background counts due to the pump beam leaking
into the outputs, measured using a bandpass filter at 400 nm, bandwidth
40 nm.

5.3 Photon Pairs from SPDC Process

5.3.1 Count Rate and Coincidence Rate

The first task was to detect down-converted photons from the PPKTP crystal on the

single photon detectors, while filtering out the strong pump beam. Initially a basic setup

was used with no polarisation analysers in the output beams and the outputs coupled to

multimode fibres with 50 µm core diameter (e.g. Figure 53(a)). Notch filters blocking

405 nm with a bandwidth of 10 nm and optical density OD > 6 (Semrock) were placed in

each output beam to block the remaining pump light from the crystal. In this configuration

up to 2 MHz count rates were recorded on the detectors for the maximum pump power

of 9.3 mW. The count rate against pump power is shown in Figure 58. To confirm these

counts are from down-conversion and not the pump beam leaking through the filters, a

bandpass filter at 400 nm with 40 nm bandwidth was added to each output. This is the

‘background’ count rate in Figure 58. Less than 4% of the counts were transmitted by

the bandpass filter and therefore due to the pump beam, so we can conclude that the MHz

count rates detected are down converted photons coming from the SPDC process in the

PPKTP crystal.

Now we must confirm that the down-converted photons arrive as photon pairs at the

detectors. The cross-correlation function g(2)(τ) between the two detectors was measured

using the ID900 Time Controller. Coincidence histograms are shown in Figure 59. The

large peak at τ = 0 shows that photon arrival times in the two output modes are correlated

within around 400 ps. The smaller peaks near ±50 ns are due to reflections in the multi-
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Figure 59: Cross correlation function g(2)(τ) between the two output modes
collected through multimode fibres. (a) g(2)(τ) showing large peak at τ = 0

due to correlated arrival times of photon pairs, and smaller peaks near ±50 ns
due to reflections in the multimode fibre. (b) Zoom-in of the central peak
showing photon pairs arrive simultaneously to within 400 ps.

mode fibres, as in the experiments on hBN. The detected coincidence rate, or photon pair

detection rate, is found by integrating the coincidence counts in the peak of the g(2)(τ)

function.

In the final version of the setup (as in Figures 53(c) and 54), the output beams were

coupled to single mode fibres (Thorlabs, SM780Y, APC connectors). The count rates

were significantly lower through single mode fibre, however these fibres maintain a sin-

gle spatial mode which is essential for HOM interference later. Also, the APC connectors

eliminate the back reflections seen in multimode fibre. The g(2)(τ) function using single

mode fibres is shown in Figure 60(a). This was also measured after the pump laser diode

was replaced, resulting in a narrower pump spectrum. Compared to the multimode case,

the g(2)(τ) peak width is narrower at around 100 ps.

The output fibre couplers had to be very carefully aligned to couple the maximum

photon pair rate while balancing the rates of |HV ⟩ and |V H⟩ states. Figure 60(b) shows

the count rates at each output and the coincidence rate in the |DD⟩ basis (i.e. diagonal

polarisation: projecting both parts of the entangled state), after optimising the output cou-

pling with single mode fibres. Note that the maximum pump power was lower in this

measurement because the optical isolator had been adjusted to improve the pump laser

beam profile at the expense of the transmission efficiency.

5.3.2 Emission Spectrum and Temperature Tuning

Using the custom built grating spectrometer introduced earlier, the spectra of the sig-

nal and idler modes could be measured to a resolution of 0.1 nm. The output modes were
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Figure 60: Coincidence rate of photon pairs using the final version of the
setup with single mode fibres. (a) g(2)(τ) function between the two output
modes measured in the |HV ⟩ basis. (b) Singles count rate for outputs 1 and
2 (blue circles and squares, respectively), and coincidence rate (red circles)
as a function of the total pump power, measured in the |DD⟩ basis.

connected to the spectrometer with single mode optical fibres. Typical count rates in each

mode were around 30 kHz, this was easily visible on the EMCCD in the spectrometer,

with typical parameters being EM gain 300, acquisition time 0.5 s, and with the sensor

cooled to -60◦C. The output mode would be focused onto a line of pixels, which were

converted from pixel number in the x direction to wavelength using the calibration proce-

dure described earlier in this chapter. The spectrometer was always calibrated using the

same single mode fibre used to measure spectra to avoid changing the alignment of the

spectrometer setup.

The initial results for temperature tuning the signal and idler modes are shown in Fig-

ure 61. At this point in the experiments, the pump laser spectrum was multimode with

four peaks over a width of around 0.6 nm. This produced multiple peaks in the signal

and idler modes seen in Figure 61(b). For later experiments the pump laser diode was

replaced and the laser was returned to proper single mode emission. Still, taking the peak

wavelength for each output mode, the wavelength change with temperature is linear as

expected. The output modes are degenerate at 26◦C, so this temperature was used for all

measurements in the first attempt at HOM interference.

After replacing the pump laser diode and ensuring its spectrum was single mode, the

output spectra of the signal and idler modes were as shown in Figure 62. The spectra are

now single peaked with an average FWHM linewidth of 0.8 nm, and the two modes are

degenerate at 31.0oC. Figure 62 shows good overlap between the signal and idler spectra

at 31.0oC. Note that the pump wavelength was slightly increased to 405.0 nm which in-
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Figure 61: Temperature tuning the signal and idler mode wavelengths. (a)
The maximum wavelengths from outputs 1 and 2 are tuned by changing the
PPKTP crystal temperature. The output modes are degenerate at 26◦C.
(b) Spectra from outputs 1 and 2 measured on the EMCCD spectrometer at
26◦C. There are multiple peaks in the spectrum over a range of more than
5 nm due to the broad multimode spectrum of the pump laser at the time
of this measurement. The peak wavelength is the wavelength shown in the
left panel. Inset shows the spectrum for one output mode as seen on the
EMCCD.

creased the degenerate temperature compared to the measurement in Figure 61.

5.4 Quantum State Tomography on Polarisation Entangled Photon
Pairs

To completely determine the output state from our setup we need to do quantum state

tomography. This is the process by which the density matrix of the state in a given basis

is reconstructed from a set of coincidence rate measurements. From the density matrix

the quantum state can be uniquely determined, in this case in the two-photon polarisation

basis. In this section I follow the method for quantum state tomography described by

James et al. [151].

I will discuss two approaches, so called linear tomography and maximum likelihood

tomography. Linear tomography is instructive for understanding how the experimental

measurements are transformed into a density matrix, however experimental errors can

cause this method to produce density matrices that are unphysical. The maximum like-

lihood approach starts with a density matrix that is physically allowed by construction,

then fits this density matrix to the experimental data by maximising a suitable likelihood

function.
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Figure 62: Temperature tuning of the signal and idler mode wavelengths
after improving the pump laser spectrum. (a) Central wavelengths at outputs
1 and 2 as a function of crystal temperature, error bars indicate standard
deviation of Gaussian fit to the spectral peak. Linear regression fit shows the
wavelengths are degenerate at 31.0oC. (b) Surface plot showing the mea-
sured spectra at each temperature. (c) Comparison of output 1 (magenta)
and output 2 (green) spectra around the degenerate temperature, showing
complete overlap.
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Firstly the measurements: tomography requires a complete set of projection measure-

ments on the polarisation states of the photon pairs. The basis for our density matrix will

be the horizontal and vertical polarisation states for the signal and idler modes:

(
|H⟩
|V ⟩

)
s

⊗

(
|H⟩
|V ⟩

)
i

=


|H⟩s|H⟩i

|H⟩s|V ⟩i

|V ⟩s|H⟩i

|V ⟩s|V ⟩i

 . (121)

The resulting 4×4 density matrix requires a minimum of 16 projection measurements to

form a complete set. There is no unique set of measurements, the 16 measurements used

in this thesis are the ones used in Ref. [151]. For each measurement basis the coinci-

dence counts are measured for a fixed time. The measurement basis is chosen using the

polarisation analysers in each output beam. The projection measurements are listed in

Table 5 with the half waveplate (hs,i) and quarter waveplate (qs,i) angles required for each

measurement. Superpositions of the H and V polarisation states are also used: diagonally

polarised |D⟩= (|H⟩+ |V ⟩)/
√

2, right circular polarised |R⟩= (|H⟩− i|V ⟩)/
√

2, and left

circular polarised |L⟩= (|H⟩+ i|V ⟩)/
√

2.

The measurement gives us 16 coincidence counts nν (ν = 1,2...16) which are related

to the density matrix by:

nν = N⟨ψν |ρ̂|ψν⟩ (122)

where N is a constant containing the photon pair emission rate and detection efficiency.

Following the derivation for linear tomography in Ref. [151], the density matrix can be

reconstructed from nν by a weighted sum of a set of 4×4 matrices M̂ν :

ρ̂ =
∑

16
ν=1 M̂νnν

∑
4
ν=1 nν

. (123)

The matrices M̂ν are listed in the Appendix B in Ref. [151]4. The density matrix is nor-

malised by the constant N = ∑
4
ν=1 nν . Using Equation (123) we can quickly estimate the

density matrix from the experimental data. However, as stated earlier the resulting den-

sity matrix is not necessarily physical due to experimental errors, i.e. the matrix may not

be positive semidefinite as required for a physical density matrix. To ensure the density

matrix is physical, we must instead fit a model for the density matrix to the data using a

maximum likelihood method.

The maximum likelihood method begins with constructing a parameterised density

matrix which is positive semidefinite, normalised, and Hermitian by construction. The
4Note that there are typos in M̂2 and M̂14. In M̂2, row 4, column 2 should be −(1− i). In M̂14, row 2,

column 3 should be (1− i) and row 3, column 2 should be (1+ i). These matrices can be checked against
Equation (B3) in the Appendix of James et al. [151].
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ν State |ψν⟩ hs qs hi qi

1 |H⟩s|H⟩i 45◦ 0 45◦ 0

2 |H⟩s|V ⟩i 45◦ 0 0 0

3 |V ⟩s|V ⟩i 0 0 0 0

4 |V ⟩s|H⟩i 0 0 45◦ 0

5 |R⟩s|H⟩i 22.5◦ 0 45◦ 0

6 |R⟩s|V ⟩i 22.5◦ 0 0 0

7 |D⟩s|V ⟩i 22.5◦ 45◦ 0 0

8 |D⟩s|H⟩i 22.5◦ 45◦ 45◦ 0

9 |D⟩s|R⟩i 22.5◦ 45◦ 22.5◦ 0

10 |D⟩s|D⟩i 22.5◦ 45◦ 22.5◦ 45◦

11 |R⟩s|D⟩i 22.5◦ 0 22.5◦ 45◦

12 |H⟩s|D⟩i 45◦ 0 22.5◦ 45◦

13 |V ⟩s|D⟩i 0 0 22.5◦ 45◦

14 |V ⟩s|L⟩i 0 0 22.5◦ 90◦

15 |H⟩s|L⟩i 45◦ 0 22.5◦ 90◦

16 |R⟩s|L⟩i 22.5◦ 0 22.5◦ 90◦

Table 5: Set of projection measurements used for quantum state tomog-
raphy, and the corresponding half waveplate and quarter waveplate angles
of the signal (s) and idler (i) output polarisation analysers. Based on the
projection measurements chosen in Ref. [151].
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Figure 63: Real and imaginary parts of the density matrix from the PPKTP
entangled photon pair source. The pump beam was polarised at 45◦ with an
ellipticity -35◦ (left elliptical polarisation). The right panel shows the fidelity
compared with the quantum state |ψ−⟩ increases as the pump beam is made
more elliptical.

physical density matrix ρ̂p satisfies these conditions if it is defined as:

ρ̂p(t) =
T̂ †(t)T̂ (t)

Tr{T̂ †(t)T̂ (t)}
(124)

where the matrix T̂ (t) is parameterised by t = (t1, t2...t16):

T̂ (t) =


t1 0 0 0

t5 + it6 t2 0 0

t11 + it12 t7 + it8 t3 0

t15 + it16 t13 + it14 t9 + it10 t4

 . (125)

By assuming the error in the measured data is Gaussian distributed, a likelihood func-

tion can be defined for the likelihood that the physical density matrix ρ̂p(t) produces the

measured data {n1,n2...n16}. After taking the logarithm of the likelihood function, max-

imising the likelihood is equivalent to minimising the function L(t) with respect to the

parameters t = (t1, t2...t16) [151]:

L(t) =
16

∑
ν=1

[N⟨ψν |ρ̂p(t)|ψν⟩−nν ]
2

2N⟨ψν |ρ̂p(t)|ψν⟩
. (126)

The minimum of L(t) was found using the MATLAB fminsearch function. The initial

values of the parameters t were taken from the linear tomography density matrix by in-

verting the matrix using the relation given in Ref. [151].

There was generally only a very small discrepancy between the density matrix results

using the linear tomography and maximum likelihood methods. However, the maximum

likelihood method was always used for final results since it always gives a physically al-

lowed density matrix.
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The main measure we will use to assess the quality of the output polarisation entangled

state is the quantum state fidelity F . The fidelity for comparing a measured density matrix

ρ̂expt with the target state |ψtarget⟩ is given by:

F = ⟨ψtarget |ρ̂expt |ψtarget⟩. (127)

So that the fidelity is 1 (or 100%) when the density matrix perfectly matches the target

state. The polarisation entangled state generally has a phase difference θ between the two

terms:

|ψ(θ)⟩= 1√
2

(
|H⟩|V ⟩+ eiθ |V ⟩|H⟩

)
. (128)

In our experiment we aimed for the Bell states |ψ±⟩:

|ψ±⟩= 1√
2
(|H⟩|V ⟩± |V ⟩|H⟩) . (129)

Figure 63 shows the real and imaginary parts of the density matrix for a polarisation en-

tangled state with F = 93.4% (|ψ−⟩). The density matrix can be tuned by varying the

pump beam polarisation. The polarisation azimuth should ideally be along 45◦ to put

equal optical power in the clockwise and anticlockwise pump beams, but the ellipticity

changes the phase θ between the two terms of the entangled state. However, we found

that when the output couplers were aligned to maximise coincidence counts in the diago-

nal basis (|DD⟩), there was generally an imbalance in coincidence counts in the |HV ⟩ and

|V H⟩ bases. This could be compensated by rotating the pump beam polarisation azimuth

to change the relative power in the clockwise and anticlockwise pump beams.

As an example, in the experimental run shown in Figure 63, the fidelity was max-

imised for an ellipticity of -35◦ (left elliptical polarisation). Both the |ψ−⟩ and |ψ+⟩
states were realised with different settings of the input beam polarisation, as shown in

Figure 64, with fidelities of F = 94.7% for |ψ−⟩ and F = 98.9% for |ψ+⟩. Note that the

polarisation required for each state also depends on the exact alignment of the output fibre

couplers, so the polarisation was optimised for a given state after each time the alignment

was changed.

5.5 HOM Interference

The main aim of developing the PPKTP polarisation entangled photon pair source was

to produce path entangled photon states, i.e. two-photon N00N states. To do this we need

to interfere photon pairs using the HOM effect.

A schematic of the HOM setup at the output of the entangled photon pair source is

shown in Figure 65. The two output modes in single mode fibres are coupled to a 50:50

single mode fibre beamsplitter, then fibre coupled to the SPAD detectors. One of the
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Figure 64: Examples of density matrices produced from the PPKTP entan-
gled photon pair source. (a) Real and imaginary parts of the density matrix
for the |ψ−⟩ state with fidelity F = 94.7%. (b) Density matrix for the |ψ+⟩
state with fidelity F = 98.9%. These two different polarisation entangled
states were achieved by changing the polarisation angle and ellipticity of the
input pump beam.
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Figure 65: Schematic of the setup for HOM interference at the output
of the PPKTP polarisation entangled photon pair source. Outputs 1 and
2 represent the two outputs shown in Figure 52. A polarisation analyser in
each output beam is made up of a quarter waveplate (QWP), half waveplate
(HWP), and linear polariser (LP). PC: polarisation controller, SPAD: single
photon avalanche diode.

output fibres is in a fibre polarisation controller (PC), so that the polarisations of the two

modes can be matched before the HOM beamsplitter. The delay line in the output 2 beam

path controls the time delay between photons arriving at the beamsplitter.

For the first attempt at the HOM measurement, the photon pairs were prepared in the

|ψ+⟩ state. This was confirmed by doing a tomography measurement just before the HOM

beamsplitter, with fidelity F = 96.8%. The polarisation analysers were set to the diagonal

basis |DD⟩ so that both parts of the entangled state were projected onto the fixed vertical

polarisation at the linear polarisers. In this basis, we are selecting the product state |DD⟩
so that the photons interfering at the HOM beamsplitter are ideally indistinguishable and

show HOM interference.

To see HOM interference, the two output modes must be brought together with zero

path length difference, parallel polarisation states, and well matched optical spectra. The

polarisations between the interfering modes were then set roughly to parallel using the

alignment beam at 810 nm (shown in Figure 52) and measuring the polarisation state in

each mode using a polarimeter. This was an approximate method because the polarimeter

available was for the visible range and calibrated up to 700 nm but it provided a starting

position for the fibre polarisation controller. The polarisation could be optimised later by

minimising the coincidence rate at the expected position of the HOM dip. To overlap the

spectra of the two modes, the crystal temperature was set to 31.0◦C, as found earlier in

this chapter using the EMCCD spectrometer.

The results from the first HOM attempt are shown in Figure 66. The coincidence rate

was measured (120 s per point) as the position of the delay line was varied around zero
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Figure 66: Initial HOM interference measurement. Coincidence counts as
a function of delay line position, converted to delay time, showing a HOM
dip. The output modes were set to the |DD⟩ basis for this measurement
and the polarisation states were roughly matched using a fibre polarisation
controller. Coincidences were counted for 120 s per point.

path length difference. There is a dip in the coincidence rate near 6 mm on the delay line

which is consistent with HOM interference. To convert from the delay line displacement

d to the delay time τ:

τ =
2d
c

(130)

where d = 0 is taken as the centre of the HOM dip. Error bars were calculated as the

square root of the coincidence count, assuming the counts are Poisson distributed.

When the outputs were being measured in the |DD⟩ basis, the HOM signal was highly

sensitive to the alignment of the fibre couplers in the two output beams. It was only pos-

sible to see a HOM dip as clear as in Figure 66 once, despite many attempts varying the

output fibre coupler alignment and the polarisation controller settings.

A more successful approach to see HOM interference was to completely remove the

linear polarisers from the output beams so that both the horizontal and vertically polarised

components of each output mode were coupled into the single mode fibres. With this input

state, the HOM measurement was repeated with the output polarisation analysers set to

no rotation (parallel), and with the polarisation in one beam rotated 90◦ (perpendicular).

An advantage of this approach is that the coincidence rates are increased by removing the

linear polarisers, which are expected to block 50% in each output mode. Also, by mea-
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Figure 67: HOM interference measurement. Coincidence count rate as a
function of delay line position, converted to delay time. This measurement
was done with the linear polarisers removed from the output modes. The
red points (parallel) are with no rotation to the output mode polarisation;
blue points (perpendicular) are with one output mode polarisation rotated
90◦. Coincidence counts were measured for 60 s per point.

suring both the parallel and perpendicular polarisation settings, we obtain a background

measurement for the coincidence count rate from which we can measure the HOM inter-

ference visibility.

A HOM dip measured without the linear polarisers is shown in Figure 67. The par-

allel measurement is with polarisation analysers set to no rotation, and perpendicular is

with the polarisation in one beam rotated 90◦. Note that the half waveplates were in the

output beams at all times (for both polarisation settings). We see a HOM dip for the par-

allel measurement and no dip for the perpendicular measurement. The fibre polarisation

controller was adjusted to maximise the HOM dip visibility for the parallel measurement.

The HOM interference result could now be achieved consistently. After optimising the

polarisation controller position and crystal temperature a HOM visibility of up to 89%

could be achieved.

To understand why we see a HOM dip with these experimental settings, we need to

consider the effect of the HOM beamsplitter on the Bell states |ψ+⟩ and |ψ−⟩. For the

|ψ+⟩ state, the output state has no coincidences on the two detectors, so we predict to see

a HOM dip in this case. For the |ψ−⟩ state, the output state has only coincidences, and we
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predict a HOM peak. This behaviour of entangled Bell states combined on a beamsplitter

is demonstrated in Ref. [152]. Now if we rotate the polarisation of one mode by 90◦ in

the |ψ+⟩ state, the coincidence terms again cancel and we expect a HOM dip. This does

not agree with the results in Figure 67 if we do actually have the |ψ+⟩ state at the input to

the HOM beamsplitter.

The results in Figure 67 are what we would expect for a product state of photons:

when the two photons are polarised parallel they produce a HOM dip, and when they are

polarised perpendicular there is no HOM dip (50% coincidences and 50% single counts).

It should be noted that removing the linear polarisers misaligns the output beams from

the fibre couplers. The outputs were realigned to maximise the coincidence count rate for

the HOM setup. It appears that after realigning the output couplers before the HOM mea-

surement, we no longer have the polarisation entangled state in the two output modes. If

instead we have a product state after realignment then we expect to see the HOM signals

shown in Figure 67.

We confirmed this by measuring the HOM dip, then immediately replacing the lin-

ear polarisers and measuring the density matrix via tomography, without changing the

output fibre coupler alignment. The density matrix in this case showed the main contribu-

tion to the state was the product state |HV ⟩, with near-zero contributions from the other

two-photon polarisation basis states. The fibre polarisation controller then rotates the po-

larisation of one mode resulting in |HH⟩ at the input to the beamsplitter for the parallel

case, and |HV ⟩ for the perpendicular case, consistent with the HOM signals we see.

This highlights that polarisation entanglement is not required to achieve high visibility

HOM interference; we instead need indistinguishable photon pairs to demonstrate HOM

and produce two-photon N00N states.

5.6 Conclusions

In this chapter I presented work on building and characterising a source of polarisa-

tion entangled photon pairs using a PPKTP crystal in a Sagnac loop setup. This setup is

intended to produce entangled photon pairs at degenerate wavelengths which can show

two-photon interference via the HOM effect and can be applied in quantum-enhanced

sensing schemes.

The final setup was able to achieve quantum state fidelities of up to 94.7% and 98.9%

for the |ψ−⟩ and |ψ+⟩ polarisation entangled Bell states, respectively. HOM interference

was also demonstrated with visibility up to 89%. The background coincidence count rate
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in these HOM measurements was around 100 Hz, meaning that two-photon N00N states

were being produced at almost 90 Hz rates. These states are directly applicable in quan-

tum sensing schemes using a MZI, as discussed in Chapter 2.

The photon pair production rate achieved here was relatively low compared to other

similar experiments in the literature. The maximum coincidence rate recorded during

measurements on the final setup was up to 380 Hz at 6.4 mW total pump power. Account-

ing for the spectral width of the photons which was 0.8 nm, the spectral pair detection

rate was approximately 74 Hz mW−1 nm−1. One reason for this is that the SPAD detec-

tors have a quantum efficiency of at most 15% at 810 nm. For coincidence counts, this

efficiency is squared: 2.3%, therefore the photon pair rate arriving at the detectors is ap-

proximately 3.3 kHz mW−1 nm−1. Since this is still below the tens of kHz reported in the

literature [134], this suggests our photon pair source could be improved significantly by

optimising the focusing conditions and collection optics to minimise losses before cou-

pling to the single mode fibres.

Overall, the work in this chapter was successful in developing a source of entangled

photon pairs suitable for making quantum sensing experiments. The source is fibre cou-

pled to single mode fibres so that it can be easily integrated with other setups, and as

shown in the next chapter, coupled to tapered optical fibre sensors. The entangled photon

pairs could be used in a MZI as discussed already, or the HOM signal itself could be used

for sensing applications. In the next chapter we take the latter approach to demonstrate a

basic refractive index sensing experiment in a tapered fibre sensor using the HOM inter-

ference phenomenon to encode small changes in optical path delay.
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6 Towards Quantum-Enhanced Sensing with Tapered Op-
tical Fibres and WGM Interferometers

Having built and characterised a source of polarisation entangled photon pairs and

demonstrated HOM interference, we now turn to coupling these photons to a sensor setup.

Tapered optical fibres are a convenient way to couple the entangled photon pairs to an

aqueous environment for sensing purposes, since we can keep the photons in-fibre all the

way from the outputs of the PPKTP setup to our single photon detectors. Tapered fibres

can then be used to couple photons to a WGM resonator.

First I will introduce the fabrication process for tapering fibres over a gas flame, then

show results from inserting tapered fibres into the fibre-coupled HOM setup. By inserting

a tapered fibre before the HOM beamsplitter, it is possible to detect changes in the refrac-

tive index around the tapered region as a shift in the HOM dip position. This is our first

demonstration of a quantum optical sensing mechanism using the entangled photon pair

source.

In the last sections of this chapter, I will show a demonstration of tapered fibre cou-

pling to WGM microspheres, and how the WGM resonance wavelength can be control-

lably tuned by changing the temperature of the WGM resonator and the aqueous medium

around it. These are some essential ingredients for coupling entangled photon pairs to

the microsphere. However, coupling entangled photons from our source to a WGM res-

onator is still a major experimental challenge due to the large mismatch between the en-

tangled photon spectral width (0.8 nm) and the typical WGM linewidths used for sensing

(∼100 fm). I will discuss how these challenges could be overcome in future experiments

in order to investigate WGM quantum sensing schemes such as the Mach-Zehnder scheme

presented in theory in Chapter 2.

6.1 Tapering Optical Fibres

Tapered fibres were made by stretching optical fibres over a propane/oxygen flame.

The setup is shown in Figure 69, this was built with Dr Samir Vartabi Kashanian and

Dr Rithvik Gutha, based on an earlier setup from Dr Eugene Kim [153]. The conditions

needed for making low-loss tapered fibres are discussed in Refs. [154, 155]. We used a

gas flow ratio of 36:100 of C3H8:O2 to produce a sufficiently hot blue flame, shown in the

inset of Figure 69.

Single mode fibre (SMF-28) was used for tapering since large quantities of telecom-

munications fibre are easily available. A 20-30 mm length of fibre is stripped of the
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Figure 68: Photograph of the fibre tapering setup. Inset shows the blue
propane/oxygen flame used to soften the optical fibre while it is being
stretched by the two motorised stages.
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Figure 69: Transmission through optical fibre during tapering process. The
fibre has reached the single mode condition once the interference fringes
stop. Inset shows a tapered fibre viewed through a 10X objective, with a
waist diameter of (2.6±0.2) µm.

coating and cleaned with isopropanol. This section of fibre is clamped to two motorised

stages above the gas flame and stretched by moving the stages apart a controlled rate with

a LabVIEW control program. A 780 nm laser beam was coupled though the fibre and

the transmission was monitored on a photodiode to track the tapering process. A typi-

cal transmission signal during tapering is shown in Figure 69. While the fibre is being

stretched, interference fringes are seen as the cladding and core of the fibre are fused to-

gether and the fibre becomes multimode. When the fringes in the transmission stop, the

tapered region has become single mode again.

Completed tapered fibres were attached to a holder using UV curing glue to move

them to the PPKTP entangled photon pair setup. Fibres are typically ∼2 µm in diameter

at the fibre waist, with a tapered region 5-10 mm long. The ends of the SMF-28 tapered

fibre were fusion spliced to two single mode fibres for 780 nm with APC connectors in

order to couple to the other 780 nm fibres used in the PPKTP setup. We found that splic-

ing telecommunications fibre to 780 nm fibres did not cause excessive photon losses, and

as shown in the next section, adding a tapered fibre to the fibre coupled HOM setup only

slightly decreased the detected coincidence rate.
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Figure 70: Schematic of HOM setup including a tapered fibre (a) after
the HOM beamsplitter, and (b) before the HOM beamsplitter. In case (b),
a change in the refractive index in the evanescent field around the tapered
fibre causes a shift in the HOM dip due to the change in optical delay.

6.2 Detecting Refractive Index Changes in a Tapered Fibre Sensor
using HOM Interference

Two configurations were used for HOM measurements including tapered fibres, as

shown in Figure 70. Configuration (a) has a tapered fibre at one output of the HOM

beamsplitter and another single mode fibre of approximately the same length at the other

output. Configuration (b) has a tapered fibre before the HOM beamsplitter, at one of the

inputs. In this case the single mode fibre in the other output must be closely matched in

length in order to still have photon pairs arriving simultaneously on the beamsplitter and

observe HOM interference.

Figure 71 shows the HOM dip observed with the tapered fibre after the HOM beam-

splitter. Parallel and perpendicular polarisations (∥ and ⊥) are shown for the case of i.

no tapered fibre, ii. a tapered fibre in air, and iii. a tapered fibre in water. The tapered

fibre is inserted into water using a polydimethylsiloxane (PDMS) chamber with 300 µl of

water contained by surface tension. When the fibre is lowered into this chamber, an 8 mm

length of the tapered region is surrounded by water.

From Figure 71, we see that the HOM dip is at the same delay line position (i.e. the

same optical delay) in all three cases. Adding the tapered fibre introduces some addi-

tional losses, decreasing the coincidence rate by around 15%. Putting the fibre in water
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Figure 71: HOM dip measured with a tapered fibre inserted after the HOM
beamsplitter. Measurements are shown without the tapered fibre, with the
fibre in air, and with the fibre in water.

decreased the coincidence rate by a further 35%. Even after these losses, the HOM dip is

easy to resolve measuring the coincidence counts for 60 s per point.

If the tapered fibre is instead put before the HOM beamsplitter, any change in refrac-

tive index around the tapered region does change the optical delay at which we see the

HOM dip. First the tapered fibre was inserted at one of the inputs to the HOM beamsplit-

ter (see Figure 70(b)) with a slightly longer length of fibre than the 5 m single mode fibre

at the other beamsplitter input. Then the g(2) peak is measured at the outputs of the beam-

splitter - the peak no longer occurs at zero time delay because of the additional length of

fibre. The difference in the fibre lengths d can be calculated from the time delay where

there is a peak in g(2), τ , if we assume the fibre has refractive index n = 1.45:

d =
cτ

n
(131)

where c is the speed of light in vacuum. Then, the fibre splices connecting the tapered

fibre to the APC connectors are broken, a total length of fibre d is carefully removed

and the fibres are spliced again. The tapered fibre should now be very close to 5 m and

matched in length to the other beamsplitter input.

Figure 72 shows the HOM dip measured with the tapered fibre before the HOM beam-

splitter, with the tapered region in air and in water. When the refractive index of the

medium changes from 1.00 to 1.33, the HOM dip shifts by 0.67 ps in time delay. The fits

applied in Figure 72 are of the form y = A|τ − τo|+B, where the HOM dip is at τo time
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Figure 72: Change in refractive index around the tapered fibre detected by
a shift in the HOM dip position.

delay. The time delay ∆τ introduced by the tapered fibre can be modelled as:

∆τ = α
L(∆n)

c
(132)

where L is the length of tapered fibre in the medium, ∆n is the change in refractive index in

the surrounding medium, and α is the fraction of the optical mode volume in the evanes-

cent field, i.e. that experiences the change in refractive index. For the change between

air and water in this experiment, L = 8 mm, ∆n = 0.33, and ∆τ = 0.67 ps. This gives

an estimate α = 8%. We could increase α and increase the refractive index sensitivity

by making a narrower tapered fibre; although this typically increases the optical losses, it

also extends the evanescent field around the fibre.

6.3 Tapered Fibre-Coupled WGM Resonators

Demonstrating the coupling of entangled photon pairs to tapered optical fibres was the

first step towards experiments with entangled photon and WGM resonators, because we

can use tapered fibres to couple photons to a WGM resonator. This method of coupling

light to the resonator has a number of advantages: the setup is all in-fibre from the outputs

of the PPKTP entangled photon pair source to the detectors to minimise photon losses,

very high coupling efficiency can be achieved using tapered fibres, and the coupling re-

flection amplitude r (discussed in Chapter 2) can be varied by changing the sphere-fibre

distance. Narrow tapered fibres with long evanescent fields can reach the critical and

overcoupling conditions when brought very close to the resonator. In this section I will

describe some experiments on tapered fibre coupling to a WGM microsphere and tuning
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Figure 73: Photographs of tapered fibre coupling to WGM resonators. (a)
WGM microsphere fabricated by melting the tip of an optical fibre (SMF-28),
with diameter 89 µm. (b) Tapered fibre coupling laser light at 780 nm to
the WGM microsphere. (c) Setup for coupling tapered fibres to WGM micro-
spheres. The microsphere is inserted into the PDMS chamber from above.
The chamber holds 300 µ l of an aqueous sample. A TEC, heatsink and a
thermistor which can be attached to the TEC surface allow the temperature
of the aqueous sample and microsphere to be controlled. Scale bars in (a)
and (b): 90 µm.

the WGM resonance wavelength by controlling the microsphere temperature.

Figure 73 shows the setup for immersing tapered fibre sensors in water and also for

coupling light to WGM resonators. WGM microspheres are fabricated by melting the

tip of a single mode optical fibre (SMF-28) with a high power IR laser (CO2 laser, Syn-

rad). Surface tension pulls the silica into a spherical shape as it melts to produce an optical

resonator with a Q factor typically in the range 106−7. Figure 73(a) shows a WGM micro-

sphere with 89 µm diameter, and (b) shows the same microsphere evanescently coupled

to a 780 nm laser beam in a tapered fibre.

From the theoretical model in Chapter 2, we can characterise the WGM resonator

by two main parameters: the amplitude transmission per round trip α , and the coupling

amplitude reflection coefficient r. Transmission per round trip α is a property of the

resonator and the surrounding medium since it has contribution from absorption in the

microsphere, scattering from the surface of the sphere, and losses due to absorption or

radiation to the external medium. The coupling condition with the tapered fibre is charac-

terised by r, which depends on the evanescent field length of the tapered fibre, the mode
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Figure 74: WGM microsphere coupled to a tapered fibre with varying
tapered fibre-sphere distance. (a) Spectra for one WGM as the sphere-fibre
distance d is varied. The colourmap shows the normalised optical power
coupled to the resonance. (b) Circulating power in the WGM resonator Pc

as a function of d for a sphere and fibre in air (red points) or water (blue
points). Fits determine the values of the evanescent decay length η . (c)
Linewidth plotted as ratio between extrinsic γ and intrinsic γ0 linewidths, as
a function of d. Single exponential fits determine η . Note that the data in
(b) and (c) are normalised to the maximum values to compare between data
sets.
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matching between the fibre mode and the WGM modes, and the sphere-fibre distance d

which is variable in the experiment.

To describe the effect of d on the WGM resonance in a microsphere, we can consider

the power circulating in the resonator on resonance Pc, and the resonance linewidth γ . Pc

is proportional to the WGM transmission on resonance T0: Pc = Pin(1−T0). Following

Ref. [156], we have the following expressions for the linewidth:

γ

γ0
= A exp

(
− d

η

)
(133)

and the circulating power:

Pc = 1−

1−
(

γ

γ0

)
1+
(

γ

γ0

)


2

Pc =1−

1−A exp
(
− d

η

)
1+A exp

(
− d

η

)


2

.

(134)

The linewidth has two contributions: the extrinsic linewidth γ due to coupling losses, and

the intrinsic linewidth γ0 due to losses in the sphere, which experimentally was taken as

the linewidth at the largest distance d. The parameter η is the evanescent decay length

for the sphere and tapered fibre combined: η = ηsphere +η f ibre. This decay length can be

determined by fitting data on WGM transmission and linewidth as a function of sphere-

fibre distance to Equations 133 and 134.

Figure 74 shows the effect of varying the sphere-fibre distance d on the WGM cou-

pling. To take this data I used an experimental setup and data analysis code by Dr Samir

Vartabi Kashanian. The setup is similar to Figure 73 but has the tapered fibre mounted

on a piezo stage so its position can be controlled precisely. The transmission spectrum is

measured by sweeping the wavelength of the input laser (tuneable external cavity diode

laser, Toptica) at 50 Hz and measuring the transmission on a photodiode with a trigger to

each wavelength sweep. For this experiment a large 205 µm diameter sphere was used,

which has the advantage of having many WGMs within a wavelength scan region. A laser

near 980 nm was coupled to this sphere with a (2.1±0.4) µm diameter tapered fibre. Fig-

ure 74(a) shows the WGM spectrum around one mode as the fibre was moved towards the

sphere, with the fibre and sphere in air. The linewidth broadens, the resonance becomes

deeper, and the resonance position generally redshifts as d decreases.

Fits to Equations 133 and 134 are shown in Figure 74(b, c) for a tapered fibre and

sphere in air (red points) or in water (blue points). The fits for Pc and γ/γ0 give different
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Figure 75: Temperature tuning of a WGM resonance. (a) Spectrum of
WGM resonance with a Lorentzian fit applied to determine the resonance
position. (b) Change in the resonance position ∆λ as the temperature of
the water sample cell and microsphere is changed using the TEC.

values for the decay length η , but in both cases the evanescent decay length increases by

approximately a factor of 3 when the sphere and fibre are submerged in water. Average

values are ηair = 106 nm and ηwater = 315 nm. Since the optical fibre refractive index

is around 1.45, the index contrast between the fibre and surrounding medium is lower in

water, hence the guided mode is less tightly confined. We can relate this result back to the

tapered fibre HOM measurements in the previous section. When the medium around the

tapered fibre sensor is changed from air to water the decay length of the evanescent field

around the tapered fibre will increase as a consequence of the refractive index change.

An important point to note from Figure 74(b) is that Pc has a peak around d =

50± 10 nm. This corresponds to the critical coupling condition, which in the theoreti-

cal model for WGM coupling is the condition α = r. Therefore we can reach overcou-

pling using this tapered fibre for sphere-fibre distances less than 50 nm. The overcoupling

regime was shown in Chapter 2 to be the optimum coupling condition for investigating

effects due to entangled photon pairs coupled to WGM resonators in a MZI. As stated

earlier in this section, the capability to reach critical and overcoupling is a major advan-

tage to using tapered fibres to couple to microspheres.

In typical WGM coupling experiments, the laser source is widely tuneable and can be

swept across individual resonances as well as tuned to different resonances. For example

the laser used with the setup in Figure 73 is tuneable from 765-815 nm. Sources of en-

tangled photons will generally be much harder to tune. For our PPKTP Sagnac source the

pump laser is tuneable over 2 nm, but changing the pump wavelength causes the degener-

ate phase matching temperature to change making it challenging to use this as a practical

tuning mechanism for the photon pairs. The other approach is to tune the wavelength of
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WGM resonances. This can be achieved by changing the refractive index of the WGM

microsphere by the thermorefractive effect: on our setup the temperature of the micro-

sphere can be controlled using the TEC shown in Figure 73(c).

Figure 75 shows an experiment to demonstrate temperature tuning. A WGM micro-

sphere was coupled with a tapered fibre in water and the temperature was changed from

22.5-24.5◦C, waiting for around 10 minutes at each temperature for the microsphere and

water to equilibrate with the TEC temperature. The resonance wavelength (determined

by an inverted Lorentzian fit to the transmission spectrum) increases linearly with the

temperature, with a gradient
d∆λ

dT
= 7.5 pm/◦C. This system can control the temperature

over at least a 30◦C range for extended periods of time, so shifts of over 200 pm in the

resonance wavelength are achievable.

6.4 Challenges in Coupling Entangled Photons to WGM Resonators
for Quantum Sensing Schemes

The previous sections have presented some important experimental building blocks

we need to do experiments with entangled photons coupled to WGM resonators: demon-

strating HOM measurements through a tapered optical fibre and a basic refractive index

sensor using a quantum optical effect of two-photon interference; showing tapered fibre

coupling to a WGM microsphere on the same experimental setup; and temperature tuning

WGM resonances with a view to tuning the resonance to the wavelength of an entan-

gled photon pair source. Successfully coupling entangled photons to a WGM resonator

would enable us to study the predicted entangled photon spectrum from Chapter 2 and

investigate quantum sensing schemes with WGM biosensors. However, coupling to the

resonator remains an experimental challenge. In this section I will discuss why, and how

this could be done in future experiments.

WGM Linewidth. The typical linewidth in WGM resonators used for single molecule

sensing is ∼100 fm, with microspheres of diameter 80-90 µm, although for short sphere-

fibre distances we measured a linewidth of 2 pm. From Chapter 5, the spectral width of

photon pairs produced in our PPKTP Sagnac source is 0.8 nm. This factor of ∼ 102−3

mismatch in spectral width to WGM linewidth is the greatest challenge to coupling en-

tangled photon pairs to a WGM resonator. From the computational study in Chapter 2, in

order to properly resolve the features of the entangled photon WGM spectrum the ratio

of photon spectral width to WGM linewidth should be ∆λphoton pairs/∆λWGM ∼ 0.1. To

achieve this we either make the photon spectrum narrower, the WGM linewidth broader,

or both.

Decreasing the spectral width of the photon pairs could be achieved by filtering with
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a Fabry-Perot cavity, although this would result in very high photon losses which affects

the coincidence rate quadratically. Since the coincidence rate is currently up to around

400 Hz in experiments this does not seem feasible. Instead, the ideal approach would be to

modify our photon pair source by putting the PPKTP crystal inside a Fabry-Perot cavity.

Experiments on cavity-enhanced SPDC photon pair sources have demonstrated spectral

widths of ∼10 MHz which enabled entangled photons to be coupled to atomic transitions

[157]. This would be a major overhaul of the photon pair source. Incorporating the cavity

into the Sagnac loop source is made complicated by the modes travelling both clockwise

and anticlockwise - so we do not have separate input and output mirrors. Instead, it would

be better to replace the Sagnac loop with a PPKTP crystal in a Fabry-Perot cavity pumped

in one direction, or two PPKTP crystals in a bow-tie cavity. Alternatively, entangled pho-

ton pair sources using WGM resonators fabricated from nonlinear optical crystals can

provide very narrow linewidth photons [158]. A problem with these sources is that so far

only Type-I SPDC phase matching has been demonstrated. In this case both photons have

the same polarisation so they must be detuned in wavelength to separate them into two

spatial modes, which prevents HOM interference. Type-II SPDC in a WGM resonator

is possible in principle but the phase matching between WGMs of different polarisations

is challenging. Even after using cavity-enhanced SPDC, another ultra-narrowband filter

may be required to cut out all except one of the transmitted modes.

Increasing the WGM linewidth is possible by making small microspheres (less than

the typical 80-90 µm diameter). The broader WGM linewidth is not desirable for sensing,

but it can make the condition ∆λphoton pairs/∆λWGM ∼ 0.1 easier to achieve. From Chap-

ter 2, the linewidth ∆λ ∝ 1/R (R: microsphere radius) so it may be feasible to roughly

double the WGM linewidth this way. The other way to increase the linewidth is to work

in the overcoupled regime, which was also the best place to look for a potential SNR en-

hancement with entangled photons. This requires making thin tapered fibres which can

reach overcoupling and bringing them into contact with the microsphere.

Wavelength Tuning. To match the wavelength of a WGM resonance to the photon pair

wavelength at 810 nm requires the resonance and/or photon pairs to be tuned over a

range of up to half the WGM free spectral range (FSR). Using the equation in Chap-

ter 2, the FSR for 810 nm wavelength is FSR = 1.6 nm for a 90 µm diameter, increasing

to FSR = 2.9 nm for a 50 µm diameter sphere.

As shown in the previous section, temperature tuning of the WGM resonance on our

setup can provide at least 200 pm tuning range. This would be a coarse tuning method

with a resolution around 1 pm based on the data in Figure 75.

If we used a cavity-enhanced photon pair source, the photon wavelength could be

tuned over a small range (the FSR of the cavity) by tuning the cavity length. Since the

SPDC bandwidth is relatively wide (0.8 nm for our 25 mm crystal) the photon pair count

rate should not change significantly while the cavity transmission is tuned over a small

149



range. This fine control of the photon wavelength would potentially allow the WGM

spectrum to be measured using entangled photon pairs.

Even with these fine and coarse methods for wavelength tuning, the WGM FSR is

∼ 1 nm; it may be necessary to make many WGM microspheres to find one with a reso-

nance within the temperature tuning range. Making larger resonators reduces the FSR and

makes the wavelength matching easier, but also makes the linewidth narrower so there is a

trade-off in the microsphere diameter between easier wavelength matching and linewidth

matching.

Stability and Locking. The position of a WGM resonance inevitably drifts due to slow

temperature and pressure changes. In an experiment with a tuneable laser, as long as the

laser wavelength is swept over a wide enough range, the resonance will always remain

in the wavelength scan range. Alternatively, the laser wavelength can be actively locked

to the WGM resonance position using a Pound Drever Hall (PDH) locking scheme, for

example [24, 33]. With an entangled photon pair source that is more difficult to tune in

wavelength than the laser, and with photon counting measurements which may take a long

period of time, slow drifts in the WGM wavelength are another challenge.

The first consideration to stabilise the WGM resonances is to stabilise the resonator

temperature using the temperature control system shown in the previous section. Actively

locking to the WGM resonance is more challenging in the photon counting regime. For

example, PDH locking requires the input mode to the resonator to be frequency mod-

ulated. The modulation frequency is severely limited by the rate at which the photon

number is sampled after the single photon detectors; the sampling rate should be suffi-

ciently low to reduce shot noise in the photon number. A separate laser beam could be

coupled to the resonator to produce a feedback PDH error signal, although this introduces

a relatively high power classical beam. This approach could be useful for studying the en-

tangled photon spectrum, but not for demonstrating a sensing advantage with entangled

photons since the high power classical beam can be used to track the resonance instead of

the comparatively very low power photon pairs.

Noise Sources in WGM Resonators. Finally, we consider the sources of noise in mea-

suring the WGM resonance position. From Chapter 2, if the photon number per time bin

R∆t is sufficiently low, the change in the resonance position read off from the count rate

on the side of the resonance is shot-noise-limited. It was also shown that this is the regime

where entangled photon can potentially enhance the SNR in this measurement. However,

we note that going to the low photon number regime always means increasing the noise

in absolute terms compared to the classical WGM measurement. So it should be possible

to make a proof-of-principle demonstration of SNR enhancement using entangled pho-

tons, but there is not an absolute improvement in measurement precision in this approach

- unless the optical power used in the measurement has to be constrained to a low photon
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count rate.

For more general quantum sensing schemes not necessarily using entangled photon

pairs but instead squeezed light - as discussed further in the outlook in the following chap-

ter - the noise sources currently limiting classical WGM sensing will become important.

Instead of reducing the optical power until shot noise becomes larger than the other noise

sources and demonstrating a reduction below this shot noise, quantum sensing schemes

working at higher optical power need to overcome the usual noise limits first to reach and

then go below the SNL. In current WGM sensing experiments, dominant noise sources

include temperature and pressure variations over long timescales, laser frequency jitter

[33], and fundamentally thermorefractive noise (fluctuations in the refractive index of the

microsphere due to its temperature) [159, 160]. The shot noise level lies below these other

noise sources.

Strategies to overcome these noise sources and reach a shot-noise-limited WGM mea-

surement could include using a heterodyne detection scheme to move the signal to a fre-

quency band with lower noise, as in Ref. [53], measurements using the relative positions

of WGM split modes [161], or using a technique such as cavity ring-up spectroscopy

(CRUS) which has been suggested to reach shot noise since it is a self-heterodyning mea-

surement [162].

Despite these challenges, there is a strong motivation to improve the SNR of WGM

biosensing measurements as argued in Chapter 1, especially in single molecule detection.

The aim of demonstrating quantum sensing schemes using WGM biosensors provides an

incentive to thoroughly characterise both classical and quantum noise sources in WGM

measurements. Any improvement in the precision of these sensors whether using a clas-

sical or quantum measurement scheme could lead to new applications. The following

chapter will summarise the work discussed in this thesis and give an outlook on future

work and unanswered questions.
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7 Conclusions and Outlook

In this thesis I have described the development of two quantum optics experiments

to produce photon states for applications in quantum biosensing schemes: single photon

emission from vacancy defects in hBN crystals, and polarisation entangled photon pairs

produced by the nonlinear interaction SPDC in a PPKTP crystal. These photon sources

were chosen to develop the capabilities for making quantum optics measurements in our

lab and as promising light sources for quantum-enhanced biosensing schemes. Another

aim of this thesis was to investigate quantum sensing schemes applied to WGM biosen-

sors. By studying quantum sensing schemes we can explore the fundamental noise limits

of measurements using these biosensors. Enhancements in the SNR of WGM biosensors

could lead to important improvements and new capabilities in single molecule sensing in

the future.

The hBN single photon emitters could not be used for biosensing in this study. The

initial plan was to interfere successive single photons by HOM interference to gener-

ate path-entangled states suitable for quantum sensing schemes using MZI. However, I

showed that with our experimental setup at room temperature we were unable to observe

HOM interference due to the spectral diffusion of the single photon emission; HOM has

been observed for hBN emitters at cryogenic temperatures recently [108]. Instead, we

turned to studying the intensity stability and photon number variance of our hBN emit-

ters, since another property of single photon emission which could potentially be used is

a sub-Poissonian photon number variance (intensity squeezing). I characterised the fluo-

rescence blinking and bleaching behaviours as a function of excitation power and sample

temperature. This long timescale intermittency in the single photon emission would be

disruptive to any application in sensing experiments, however a few emitters were found

which did not show any fluorescence blinking. For one of these stable emitters, I mea-

sured the time-dependent Mandel Q parameter to quantify the photon number variance

over different timescales. Despite showing clear single photon emission over nanosec-

ond timescales, when the photon count rate was integrated for 200 ns or more the photon

statistics became super-Poissonian due to the emitter having a transition to a shelving

state. This meant that any intensity squeezing due to single photon emission was lost

when integrating over any significant number of photons. We did however propose the

time-dependent Mandel Q parameter as a useful measure of intensity stability in single

photon sources as a result of this work [54].

To use entangled photon states and HOM interference for quantum sensing experi-

ments, we turned next to the photon pair source using a PPKTP crystal in a Sagnac loop.

I described the process of building and characterising this experiment which was able to

produce polarisation entangled states with up to 98.9% fidelity, and HOM interference
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with up to 89% visibility. Photon pairs were produced with degenerate wavelengths of

810 nm by controlling the temperature of the nonlinear crystal, and the spectral width

was 0.8 nm. The rate of coincidence detections of photon pairs was up to 400 Hz in these

experiments, which was limited primarily due to the efficiency of our single photon detec-

tors at 810 nm. I demonstrated a basic quantum optical measurement scheme by adding

a tapered optical fibre sensor to the all-fibre HOM experiment. The optical delay caused

by a change in refractive index around the tapered fibre caused an observable shift in the

HOM dip. For the refractive index change between air an water a 0.67 ps optical delay

was measured. Although this is not a sensitive refractive index measurement, it is a proof-

of-principle sensing scheme that uses a strictly quantum optical phenomenon to measure

a sub-picosecond optical delay, and a demonstration of our entangled photon pair source

being applied to a sensing experiment. The tapered fibre sensor setup also readily allows

coupling to a WGM microsphere.

The main motivation of this work was to develop quantum optical light sources to

investigate quantum sensing schemes with WGM biosensors. I showed some theoretical

investigation into coupling entangled photon pairs to a WGM resonator in Chapter 2. For

a WGM resonator coupled to one arm of a MZI with an entangled photon input state,

it was shown that the transmission spectrum in photon coincidences has two dips, in

comparison to the single Lorentzian dip for the classical case. This is a consequence of

the double phase shift experienced by the entangled photon pair inside the interferome-

ter. The spectrum changes with the WGM coupling conditions; the central peak of the

spectrum is most visible in the overcoupled case and becomes extremely narrow near crit-

ical coupling. The higher gradient near the central peak compared to the gradient of the

classical transmission spectrum suggests an enhancement in sensitivity when measuring

a change in resonance position. I showed an example sensing scenario using a compu-

tational model to compare the noise in a resonance shift measurement between WGM

sensing schemes with classical and entangled input states. Neglecting optical losses, a

factor of two enhancement in the SNR was shown for an overcoupled WGM resonator at

low optical powers where the measurement is shot-noise-limited. The model also showed

that to observe this enhancement the entangled photon spectrum must be sufficiently nar-

row: ∼ 0.1 WGM linewidths.

It was not possible to couple our PPKTP photon pair source to a WGM resonator in

this study, primarily because of the large mismatch between the photon spectral width and

the WGM linewidth. I discussed the challenges involved in coupling entangled photons

to a WGM resonator at the end of Chapter 6, and suggested how these could be overcome

in future experiments. This thesis has shown that the WGM-coupled MZI has an inter-

esting transmission spectrum for entangled photon input states, if this can be confirmed

experimentally. Using this entangled photon transmission spectrum there is the potential
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to demonstrate a SNR enhancement over a classical measurement scheme for measure-

ments at low optical power. These results give a strong motivation to develop experiments

on coupling entangled photons to WGM resonators and to push the noise limits of WGM

biosensors. I hope that the practical considerations discussed here on developing quantum

optical light sources for sensing will inform these future experiments.

7.1 Outlook and Future Experiments

To close I will briefly discuss potential future experiments and some of the unan-

swered questions brought up during this thesis.

The next major step would be to couple entangled photons to a WGM resonator,

which may require developing an entangled photon source using cavity-enhanced SPDC.

With this setup it would be possible to investigate the transmission spectrum of a WGM-

coupled MZI with an entangled photon pair input state, and to test the predictions from

the theory in Chapter 2. This would also enable a test of the SNR enhancement in a WGM

resonance shift measurement using entangled photon pairs. A further interesting research

direction with this experiment would be to look for the HOM effect in a WGM resonator

as described theoretically in Alsing et al. [62]. This would require a WGM resonator

coupled to two tapered fibres in an ‘add-drop filter’ configuration, and entangled photon

pairs coupled to the two fibres. The HOM experiment again requires an entangled photon

pair source with a spectral width much narrower than the WGM linewidth, so the same

tuneable and spectrally narrow entangled photon pair source would be ideal for both the

MZI and HOM experiments.

A major theoretical question to investigate is how the WGM-coupled MZI behaves

with different input states besides entangled photon pairs. In particular, what effects

would we see with squeezed states: for example, one input mode having a coherent state

and the other a squeezed vacuum state, or twin-beam squeezed states in the two input

modes? Different geometries of optical cavities such as Fabry-Perot cavities could be

added to the model since this could make our theoretical study relevant to a broader class

of sensing experiments.

It was demonstrated recently by Belsley et al. [163] for an absorption or refractive

index measurement of the medium around a WGM ring resonator, that a single-mode

coherent input state maximises quantum Fisher information for this measurement, and

that squeezed states would provide no advantage with the optimum experimental param-

eters. It would be critically important to make a connection with this work and determine

whether coherent states can also provide the optimum sensing performance in the WGM-

coupled MZI we considered here. Realistic experimental parameters for WGM biosensors
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should also be added to the model, since it may be the case that squeezed light or other

quantum optical states can provide a sensing advantage over coherent states in the exper-

imentally accessible regions of the parameter space.

Finally, we can ask how these future experiments and theoretical studies could have

applications in advancing WGM biosensors. Proof-of-principle demonstrations for en-

hanced measurements using quantum optics can be made by working at low optical power

in the shot-noise-limited regime, however to provide practical improvements to WGM

sensors these experiments need to reach comparable optical power to measurements made

using classical light. Major goals in this direction are to (a.) theoretically determine quan-

tum optical states which can provide SNR enhancements in WGM sensing, and (b.) move

to using states with higher optical power, for example using squeezed states of light.

Working at a similar optical power to classical WGM sensing means that first the noise

that currently dominates in these measurements has to be reduced to reach the SNL. Then,

quantum optics approaches to surpassing the classical noise limits could be investigated.

Potential strategies to overcome noise in WGM measurements include relative mode

shifts using WGM split modes [161], self-heterodyning techniques such as cavity ring-up

spectroscopy (CRUS) which has been suggested to be able to reach shot noise [162], or

other heterodyne measurement schemes to move the WGM signal into a frequency band

with lower noise [53]. All improvements in SNR have the potential to bring important

advances in WGM biosensing, in particular in optoplasmonic WGM sensing for single

molecule studies. As described in the introduction, signals from small molecules and

enzyme turnover events are often close to the noise. Whether using quantum sensing ap-

proaches or by reducing existing classical noise sources, any improvement in the SNR of

these measurements could enable yet smaller motions of enzymes or other biomolecules

to be resolved in the future.
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Appendix A - Time-dependent Mandel Q parameter anal-
ysis for a hexagonal boron nitride single photon source:
Supplementary Information

The following is the supplementary information document for the work on measur-

ing the time-dependent Mandel Q parameter of a hBN single photon emitter, which was

presented in Chapter 4. This has been published with Ref. [54]. The MATLAB code

I used to calculate the time-dependent Mandel Q parameter is available on the Zenodo

repository [127].

1. Pulsed timestamp filter

A filter was applied to the pulsed timestamp data before analysing the g(2)(τ) and

Q(T) functions. Using the trigger pulse output of the pulsed laser, the time delay between

each photon detection and the previous trigger pulse was available for all our data. A

histogram of the delay time after the trigger pulse is shown in Figure 76. The filter was

applied by keeping only the detections which arrive within a given time window after the

trigger pulse; all filters begin from the peak of the pulse at 7 ns delay. The following

describes the process of choosing the optimum filter settings to exclude background noise

counts and measure Q(T) due to single photon emission counts only.

Figure 76: Lifetime curve showing 5 ns filter width applied to the data.

The filter width was varied from 1 ns to applying no filter, i.e. using the raw data.

The distribution of Q parameter values for T = 100 ns integration time over all 144 data

acquisitions is plotted as a function of filter width in Figure 77. The raw data is plotted

at 100 ns filter width as this corresponds to the pulse period, i.e. maximum possible filter

width.
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Figure 77: (a) Mandel Q parameter at 100 ns integration time (integrating
over one pulse period). Histograms show Q parameter values over the 144
data acquisitions each 100 s long, for different filter widths. (b) Mean Q
parameter as a function of filter width.

As the filter width goes to zero, Q(T) also goes to zero since the number of counts

being used for the calculation decreases.

Between 5 ns and 18 ns filter width there is a stable negative Q(T). Above 18 ns how-

ever Q(T) increases sharply and becomes positive. There is another increase above 80 ns

filter width.

The sudden increase in Q(T) above 18 ns filter width can be attributed to an artefact of

our measurement seen in the raw g(2)(τ) data, see Figure 78. There are additional peaks

at ±18 ns delay time in all g(2)(τ) measurements. This only occurs when using multi-

mode fibre to collect the output light from our setup, the delay time is always the same

regardless of the light source being observed, and changing the length of multimode fibre

at the output changes the delay time at which the peaks appear. Therefore we conclude

these peaks are due to reflections from the end facets of our multimode fibre and as such

we treat them as noise.

Using single mode fibres with angled (APC) connectors would solve this issue, how-

ever we use multimode fibre, which is widely used in other hBN experiments, in order to

collect a high enough count rate under pulsed excitation to perform our measurements.

Note that for CW g(2)(τ) measurements these peaks were still present, but since the

peaks are narrow, they could be excluded from fitting procedures without significantly
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Figure 78: Raw g(2)(τ) function for pulsed excitation with 24 µW mean
power showing noise peaks at ±18 ns due to reflections in the multimode
fibre.

reducing the number of points used to fit models to the data.

The final choice of filter was 5 ns wide, i.e. over [7,12] ns delay time. This filter

setting excludes the noise peaks at ±18 ns in the g(2)(τ) function while keeping enough

photon counts to measure Q(T) due to single photon counts from our hBN emitter. A 5 ns

filter also produces the most significant negative Q value. This filter width is approxi-

mately double the radiative lifetime of the emitter: τ21 = 2.7±0.1 ns.

We can also test the effect of applying a filter to the simulated pulsed timestamp data.

In Figure 79(a) we see that decreasing the filter width below ∼5 ns moves Q(T) closer to

zero. Unlike the experimental data in Figure 77(b), Q(T) does not change significantly for

filter widths above ∼5 ns because: a. the simulated data has no background noise, and b.

the noise peaks at ±18 ns delay are not present in the simulated data.

One clear difference between the simulated and experimental Q(T) histograms is that

the simulation values are all clustered around a single value; the multiple peaks are only

seen in the experimental data. We added noise to the simulation by adding uniformly dis-

tributed background counts to the simulated timestamps, with the same background count

rate of 160±40 Hz per detection channel measured from experimental lifetime curves.

With added noise, the simulated Q(T) histograms in Figure 79(b) do show multiple peaks

and begin to resemble the experimental data more closely.

2. Detector deadtime measurement

The deadtime of our single photon avalanche diodes (SPADs) is nominally 77 ns. The
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Figure 79: Mandel Q parameter for simulated pulsed timestamp data at
100 ns integration time. (a) Simulated Q parameter as a function of filter
width. (b) Simulated Q parameter with uniformly distributed noise counts
added to the simulated timestamp data.

deadtime must be known to choose an appropriate pulse repetition rate and to model the

deadtime in Monte Carlo simulations. We measured the deadtime by detecting counts

from room lights at around 4.4 MHz count rate, approaching the detector saturation count

rate. The histogram of time delays between successive counts is shown in Figure 80.

The histograms show a sudden drop to zero for delays less than the deadtime. At large

time delays the histograms slowly decrease to zero because we only accounted for the

nearest-neighbour delays. Taking the deadtime to be the half-rise time of the curves gives

values of td = (81.35± 0.10) ns for detector 1 and td = (80.35± 0.10) ns for detector

2. For the purposes of simulating timestamps we took the deadtime to be 80 ns for both

detectors.

3. Detector afterpulsing

As well as a deadtime, SPADs can produce accidental electronic pulses after a photon

detection. This artefact is known as afterpulsing.

Afterpulsing was characterised for our SPADs by measuring the histogram of delay

times between trigger pulses and photon detections from the attenuated pulsed laser at

1 MHz repetition rate. Afterpulses are seen 80 ns after the pulse peak, and they decay

with an exponential shape, see Figure 81(a). From this measurement the afterpulsing
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Figure 80: Detector deadtime measurement using a near saturation count
rate from room lights. Histogram of delay times between successive photon
detections, showing a sudden drop to zero below the detector deadtime.
Taking the deadtime as the half rise time of the curves, detector 1 deadtime
td = (81.35±0.10) ns; detector 2 deadtime td = (80.35±0.10) ns. At high
time delays the histogram slowly decreases to zero because we only consider
nearest-neighbour delays.

probability was determined to be 0.027, consistent with the datasheet value of <0.03. A

single exponential with 52 ns width was fitted to the afterpulse peak.

Afterpulses were also added to the Monte Carlo model for generating simulated times-

tamp data using the parameters we measured: an afterpulsing probability 0.027, and an

exponential probability distribution starting 80 ns after detections with a width of 50 ns.

The simulated data in Figure 50(b) in the main text include these afterpulses. The effect

of adding afterpulses is shown for two- and three-level emitters in Figure 81(b) including

the 80 ns detector deadtime, and Figure 81(c) with no deadtime. In all cases afterpulsing

causes more bunching in the Q(T) function above 80 ns. However, it is still clear that a

three-level system is required to describe the extent of the bunching seen in experiment

(Figure 50(a) in main text).

Due to the 5 ns filter applied to the pulsed timestamp data, most of the afterpulse

counts are excluded from the Q(T) calculation. Only counts close to 100 ns (the pulse

repetition period) after the pulse will be included, since they ‘wrap around’ and arrive

at the same time as the next pulse. We estimate this effectively reduces the afterpuls-

ing probability to 0.0017, i.e. the afterpulsing effect is more than an order of magnitude

smaller for the pulsed timestamp data than the CW data.
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Figure 81: Detector afterpulsing. (a) Measurement of delay histogram
between trigger pulses and photon detections using an attenuated pulsed
laser at 1 MHz. An exponential shaped afterpulse is seen one deadtime after
the pulse peak. (b) Simulated CW Mandel Q parameter with 80 ns deadtime,
showing the difference between including afterpulsing (AP) in the model for
two- and three-level emitters (2 lvl, 3 lvl). (c) Simulated CW Q parameter
with no deadtime, with and without afterpulsing. Afterpulsing was modelled
with a probability of 0.027 and an exponential probability distribution starting
at 80 ns with 50 ns width.
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Figure 82: (a) g(2)(τ) under pulsed excitation at 24 µW. The 5 ns width
filter (over [7,12] ns delay after the trigger pulse) was applied to all timestamp
data before calculating g(2)(τ). (b) Zoom-in showing shape of g(2)(τ) peaks
after the filter was applied. (c) Power dependence of g(2)(0).

4. Pulsed g(2) as a function of power

Figure 82 shows the g(2)(τ) function under pulsed excitation as a function of the mean

incident power, at 24 µW, 82 µW and 160 µW. The data had a 5 ns wide filter applied

(over [7,12] ns delay after the trigger pulse). The value g(2)(0) was calculated as the ratio

between the τ = 0 peak area and the mean area of the 18 next nearest peaks, and the

error was estimated as the standard deviation of the peak areas. Values for g(2)(0) were:

0.37±0.02 at 24 µW, 0.69±0.04 at 82 µW, and 0.83±0.06 at 160 µW.

We found that under pulsed excitation the g(2)(0) value was very sensitive to power

and the low power needed to achieve g(2)(0) < 0.5 meant that the count rate had to be

reduced significantly: the count rate was 2.8 kHz at 24 µW mean power.

The background count rate was measured from a single exponential fit to the 24 µW

lifetime curve as 160±40 Hz per detection channel (Figure 48(b) in main text). This cor-

responds to only 0.04 coincidences per time bin in the 24 µW g(2)(τ) histogram, therefore

the background on the pulsed g(2) measurement was ignored. Note that the filtering pro-

cess does remove background counts occurring outside the filter width.

5. Emitter spectral filtering

The output count rate as a function of tunable filter angle was converted into the spec-

trum in Figure 83. The tunable filter bandwidth is around 20 nm. All measurements were

done with the filter set to the maximum count rate at 595 nm (at 38o to optic axis).

The significance of using spectral filtering is to improve the g(2)(0) value for our emit-

ter: without the filter (filter completely removed from optical path) g(2)(0) = 0.56±0.10,

with the filter set to peak count rate g(2)(0) = 0.33±0.02 (see Figure 47(c) in main text).
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Figure 83: Emission spectrum from our hBN emitter measured by rotating
the angle tunable bandpass filter at the output. The bandpass filter has a
bandwidth of around 20 nm. Peak emission count rate occurs at 595 nm,
corresponding to a filter angle of 38o.

6. Analytical solution for CW Q(T)

There is an analytical relation between g(2)(τ) and Q(T) in the continuous wave (CW)

case, for integration time T and average photon count rate ⟨I⟩ this is given by [121, 117]:

Q(T ) =
2⟨I⟩
T

∫ T

0
dτ

∫
τ

0
dτ

′
(

g(2)(τ ′)−1
)
. (135)

We can calculate this for a g(2)(τ) function which is well described by a two-exponential

fit with lifetimes t1, t2:

g(2)(τ ′) = 1− (1+a)exp
(
−|τ ′|

t1

)
+aexp

(
−|τ ′|

t2

)
. (136)

For simplicity the bunching amplitude is described by one parameter a, so that g(2)(0)= 0.

Substituting into Equation 135:

Q(T ) =
2⟨I⟩
T

∫ T

0
dτ

∫
τ

0
dτ

′
(
−(1+a)exp

(
−|τ ′|

t1

)
+aexp

(
−|τ ′|

t2

))
(137)

Q(T ) =
2⟨I⟩
T

∫ T

0
dτ

(
−t1(1+a)

(
1− exp

(
−|τ ′|

t1

))
t2a
(

1− exp
(
−|τ ′|

t2

)))
(138)

Q(T ) =
2⟨I⟩
T

(
t2
1(1+a)− t2

2 a− (t1(1+a)− t2a)T

−t2
1(1+a)exp

(
−T

t1

)
+ t2

2 aexp
(
−T

t1

))
.

(139)

163



Figure 84: Analytical solution for CW Mandel Q parameter. The function
in Equation 139 was plotted with parameters a= 0.3, t1 = 2.7 ns, t2 = 200 ns,
and single photon count rate ⟨I⟩= 34 kHz. Shaded region shows the range
plotted for experimental and simulated data in Fig. 4 of the main text.

Here we have an analytical expression for the CW Mandel Q parameter for an ideal

(g(2)(0) = 0) single photon emitter including bunching.

We can plot this function using values from CW g(2)(τ) measurements under 250 µW

excitation. In Figure 84 the analytical Q(T) expression is plotted for bunching parameter

a = 0.3, antibunching and bunching times t1 = 2.7 ns and t2 = 200 ns, and single photon

count rate ⟨I⟩ = 34 kHz. Note that the count rate ⟨I⟩ already includes the total detection

efficiency so accounts for losses in the optical path.

The shaded region indicates the range plotted for experimental and simulated Q(T) in

Figure 50 of the main text. The limiting behaviour at high and low T is the same as that

in the experimental data; in particular Q(T) tends to zero at low T . We also see that the

crossover time from negative to positive Q(T) occurs at around 21 ns, much lower than the

100 ns seen in the experimental data. The analytical model does not include all transition

lifetimes of the three-level emitter τi j, or the effect of detector deadtime.

It would also be possible to produce an analytical solution for the pulsed Mandel Q pa-

rameter. However, this would be more challenging because the pulsed g(2)(τ) histograms

are noisier due to the relatively low photon count rate under pulsed excitation. As such

there are fewer constraints when choosing a function to use in Equation 135, with param-

eters which model pulsed g(2)(τ) well.
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Appendix B - MATLAB Code

The following code used in this thesis was written in MATLAB R2019a, with no ad-

ditional packages.

Model for noise in WGM-coupled MZI

This is the code used to model the noise in an edge-of-resonance measurement of the

resonance shift for a WGM resonator coupled to one arm of a MZI. The methods and

results are in Chapter 2. Three cases are considered: transmission for a WGM coupled

to a waveguide with a single classical mode (class_trans), transmission for a WGM-

coupled MZI with one classical input mode (class_mzi), and transmission in terms of

coincidence detections for a WGM-coupled MZI with a photon pair state in the two input

modes (entgl_mzi).

The three following functions are called by the main script: wgm_gradients,

wgm_time_series_noise and wgm_mzi_func.

function [max_slope,ind_slope] = wgm_gradients(a,r,n_r,R,w,w_o,MODE)

% Find WGM gradients %

% MODE: 1 classical transmission, 2 classical MZI, 3 entangled MZI %

if MODE == 0

% Classical transmission spectrum

I_class_trans = abs(t_wgm(a,r,n_r,R,w,w_o)).^2;

diff_I_class_trans = diff(I_class_trans);

[max_slope, ind_slope] = max(diff_I_class_trans);

end

if MODE == 1

% Classical MZI spectrum

I_class_mzi = (1/2 * abs(1 + t_wgm(a,r,n_r,R,w,w_o))).^2;

diff_I_class_mzi = diff(I_class_mzi);

[max_slope, ind_slope] = max(diff_I_class_mzi);

end

if MODE == 2

% Entangled MZI transmission spectrum (coincidence counts)

Prob_N00N = wgm_mzi_func(a,r,n_r,R,w,w_o);

C_entgl_mzi = Prob_N00N(5,:);

diff_C_entgl_mzi = diff(C_entgl_mzi);

[max_slope, ind_slope] = max(diff_C_entgl_mzi);

end
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [noise3sigma,t_series,t] = wgm_time_series_noise(K,M,a,r,n_r,R,lambda_o,

c,w,t_step,ind_slope,max_slope,frac_noise,thermo_noise,MODE)

% Find 3 sigma noise in resonance shift measurement %

% MODE: 1 classical transmission, 2 classical MZI, 3 entangled MZI %

Itemp = zeros(K,M);

delt_Omega = zeros(K,M-1); % M-1 because we take diff() later

delt_w = w(2) - w(1);

for k = 1:K

w_res = zeros(1,M);

w_res = w_res + thermo_noise*randn(1,M);

for m = 1:M

if MODE == 0

I = abs(t_wgm(a,r,n_r,R,w(ind_slope),w_res(m))).^2;

end

if MODE == 1

I = (1/2 * abs(1 + t_wgm(a,r,n_r,R,w(ind_slope),w_res(m)))).^2;

end

if MODE == 2

Prob_N00N = wgm_mzi_func(a,r,n_r,R,w(ind_slope),w_res(m));

I = Prob_N00N(5,:);

end

I = I .* (1 + frac_noise(k).*randn(1));

Itemp(k,m) = I;

end

delt_Omega(k,:) = diff(Itemp(k,:))*delt_w/max_slope;

end

stdev_Omega = std(delt_Omega,0,2);

noise3sigma = 3*1e15*stdev_Omega*lambda_o^2/(2*pi*c);

t_series = Itemp;

t = zeros(K,M);

for m = 2:M
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t(:,m) = t(:,m-1) + t_step’;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Prob] = wgm_mzi_func(a,r,n_r,R,w,w_o)

% Detection probabilities for WGM-coupled MZI with photon pair input %

% WGM transmission amplitude t(w)

t = t_wgm(a,r,n_r,R,w,w_o);

tc= conj(t);

ta= abs(t);

% Expectation values of noise operator FFdag and noise operator squared F^2Fdag^2

E_F = (1 - ta.^2);

E_F2 = 2*(1 - 2*ta.^2 + ta.^4);

% Normalisaion factor A(w)

A = sqrt(1 ./ (2./(2*ta.^4) + 2*(E_F.^2)./ta.^4 + 2*(E_F2.^2)./(4*ta.^4)));

% Wavefunction amplitude for each state at the output of the MZI

% Photon numbers S_nm at detectors n and m

S_20 = (1i*sqrt(2)/4) * (A./tc.^2 - 1);

S_02 = (1i*sqrt(2)/4) * (1 - A./tc.^2);

S_11 = 0.5*(A./tc.^2 + 1);

S_10 = - 1i*A.*E_F ./ (sqrt(2)*tc.^2);

S_01 = - A.*E_F ./ (sqrt(2)*tc.^2);

S_00 = 1i*A.*E_F2 ./ (2*tc.^2);

% Probabilities for each detection outcome

P_20 = abs(S_20).^2;

P_02 = abs(S_02).^2;

P_11 = abs(S_11).^2;

P_10 = abs(S_10).^2;

P_01 = abs(S_01).^2;

P_00 = abs(S_00).^2;

Prob(1,:) = P_00;

Prob(2,:) = P_01;

Prob(3,:) = P_02;

Prob(4,:) = P_10;

Prob(5,:) = P_11;

Prob(6,:) = P_20;

end

The following is the main script. This script calculates the 3σ level noise in the res-
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onance shift measurement for K values of the integration bin width t_step and P values

of the coupling parameter r, the outputs for the three cases is in a (3 × K × P) array

delt_Omega_array. The photon detection rate is fixed at R, and the photon number per

time bin is R*t_step. Noise is added to the transmission intensity and resonance position

using pseudo-random samples from a Gaussian distribution. Final standard deviations are

calculated from M = 103 repetitions of the measurement.

%% MAIN SCRIPT %%

%% Set Parameters %%

% Initial resonator params

a = 0.9997;

r = 0.9996;

n_r = 1.45;

R = 40e-6;

lambda_o = 810e-9;

c = 3e8;

% Spectrum params N_pts = 1e5; % number of points per spectrum

w_min = -2*pi*2e9; % WGM spectrum frequency points: 2 GHz above and below resonance

w_max = 2*pi*2e9;

w = linspace(w_min,w_max,N_pts);

delt_w = w(2) - w(1);

w_o = 0;

% Time series params

M = 1e3; % number of steps in time series

K = 20; % number of repeats of time series

t_min_log = -6;

t_max_log = 1;

t_step = logspace(-6,1,K); % Integration time per time series point

w_noise = 4.57e5; % Noise level (1sigma: approx 1 fm)

thermo_noise = 2*pi*w_noise;

Rate = 1e6; % Default detection rate: photon number per time bin is R*t_step

%% WGM time series and noise %%

% MODE: 1 classical transmission, 2 classical MZI, 3 entangled MZI

P = 1e3;

delt_Omega_array = zeros(3,K,P);

r_array = [0.999:1e-6:0.999999];

for p = 1:P
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r = r_array(p);

Rate_int = Rate*t_step;

frac_noise = sqrt(Rate_int)./Rate_int;

[max_slope_class_trans,ind_slope_class_trans] =

wgm_gradients(a,r,n_r,R,w,w_o,0);

[noise3sigma_class_trans,t_series_class_trans,t] =

wgm_time_series_noise(K,M,a,r,n_r,R,lambda_o,c,w,t_step,

ind_slope_class_trans,max_slope_class_trans,frac_noise,thermo_noise,0);

%%%%

Rate_int = Rate*t_step;

frac_noise = sqrt(Rate_int)./Rate_int;

[max_slope_class_mzi,ind_slope_class_mzi] =

wgm_gradients(a,r,n_r,R,w,w_o,1);

[noise3sigma_class_mzi,t_series_class_mzi,t] =

wgm_time_series_noise(K,M,a,r,n_r,R,lambda_o,c,w,t_step,

ind_slope_class_mzi,max_slope_class_mzi,frac_noise,thermo_noise,1);

%%%%

Rate_int = Rate*t_step;

frac_noise = sqrt(Rate_int)./Rate_int;

[max_slope_entgl_mzi,ind_slope_entgl_mzi] =

wgm_gradients(a,r,n_r,R,w,w_o,2);

[noise3sigma_entgl_mzi,t_series_entgl_mzi,t] =

wgm_time_series_noise(K,M,a,r,n_r,R,lambda_o,c,w,t_step,

ind_slope_entgl_mzi,max_slope_entgl_mzi,frac_noise,thermo_noise,2);

%%%%

delt_Omega_array(1,:,p) = noise3sigma_class_trans;

delt_Omega_array(2,:,p) = noise3sigma_class_mzi;

delt_Omega_array(3,:,p) = noise3sigma_entgl_mzi;

end

%% Plotting %%

% Plot noise vs r, second index in delt_Omega_array selects the t_step value:

8 corresponds to R*t_step = 3.8e2 as in the results in the main text

y1(1,:) = delt_Omega_array(1,8,:);

y2(1,:) = delt_Omega_array(2,8,:);
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y3(1,:) = delt_Omega_array(3,8,:);

figure; semilogy(r_array,y1,’b-’)

hold on; semilogy(r_array,y2,’r-’)

hold on; semilogy(r_array,y3,’g-’)

Time-dependent Mandel Q parameter calculation

The code used for calculating the Mandel Q parameter from pulsed and CW timestamp

data is in the Zenodo repository: https://doi.org/10.5281/zenodo.7644060 [127].

This is the code that was used in the data analysis for our publication ‘Time-dependent

Mandel Q parameter analysis for a hexagonal boron nitride single photon source’ and the

results presented in Chapter 4 [54].

Monte Carlo model for two- and three-level single photon emitters

The simulated timestamp data for CW and pulsed single photon detections used in our

publication Ref. [54] and the results in Chapter 4 were generated using a Monte Carlo

model for a two- or three-level emitter. This model was based on Python code by Bernd

Sontheimer which can be found in the Appendix of Ref. [104]. The main idea is to draw

a vector of transition lifetimes from pseudo-random exponential distributions for each

transition in the energy level model and add them cumulatively to produce an ordered list

of photon emission timestamps. The code was modified for MATLAB and extended to

simulate timestamp data for CW and pulsed emission from two- and three-level systems,

and also to model the effects of detector deadtime and afterpulsing which were important

measurement artefacts in the Mandel Q parameter study.

Two-level emitter CW timestamps
The following function takes parameters N: number of excitation cycles, t_ex: excitation

lifetime (τ12), t_rad: radiative lifetime (τ21), and eta: total photon detection efficiency.

Times are in picoseconds. Within the function the afterpulsing and deadtime parame-

ters are set: afterpulse time pulse_time, afterpulse tail length tail_time, afterpulsing

probability afterpulse_prob, and detector deadtime dead_time. The outputs are two

column vectors of photon detection timestamps in picoseconds. The detections are split

50:50 onto two output channels so that g(2) can be calculated; the functions in the Mandel

Q parameter code take two input channels and combine them so they can use this simu-

lated data directly.

function [arrival_time_0,arrival_time_1] = simulate_ts2lvl_func(N,t_ex,t_rad,eta)
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% Timestamps for CW two-level emitter

% generate random delays for each excitation (picoseconds)

delay_ex = exprnd(t_ex,1,N);

delay_rad = exprnd(t_rad,1,N);

% sum all delays for radiative cycles

delay_tot = delay_ex + delay_rad;

% emission cycles must be sequential: photon arrival times are the

% cumulative sum of total delays per excitation cycle

arrival_time = cumsum(delay_tot);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Enter loss and BS transmission %%%%

p_loss = 1 - eta;

BS_transmit = 0.5;

% lose a random set of photons

photon_lost = binornd(ones(1,length(arrival_time)),p_loss);

arrival_time = arrival_time(photon_lost == 0);

% split photons between channels 0 and 1

which_path = binornd(ones(1,length(arrival_time)),BS_transmit);

arrival_time_0 = arrival_time(which_path == 0);

arrival_time_1 = arrival_time(which_path == 1);

% afterpulses

pulse_time = 8e4;

tail_time = 5e4;

afterpulse_prob = 0.027;

afterpulse_happens_0 = binornd(ones(1,length(arrival_time_0)),afterpulse_prob);

afterpulse_happens_1 = binornd(ones(1,length(arrival_time_1)),afterpulse_prob);

N_afterpulse_0 = length(arrival_time_0(afterpulse_happens_0 == 1));

N_afterpulse_1 = length(arrival_time_1(afterpulse_happens_1 == 1));

afterpulse_times_0 = arrival_time_0(afterpulse_happens_0 == 1) + pulse_time +

exprnd(tail_time,1,N_afterpulse_0);

afterpulse_times_1 = arrival_time_1(afterpulse_happens_1 == 1) + pulse_time +

exprnd(tail_time,1,N_afterpulse_1);

arrival_time_0 = sort([arrival_time_0 afterpulse_times_0]);

arrival_time_1 = sort([arrival_time_1 afterpulse_times_1]);

% remove photons arriving within the detector deadtime
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%%%% Enter deadtime %%%%

dead_time = 8e4;

last_detection = 0;

photon_dead_0 = ones(1,length(arrival_time_0));

photon_dead_1 = ones(1,length(arrival_time_1));

for i = 1:length(arrival_time_0)

dt = arrival_time_0(i) - last_detection;

if dt > dead_time

last_detection = arrival_time_0(i);

photon_dead_0(i) = 0;

end

end

last_detection = 0;

for j = 1:length(arrival_time_1)

dt = arrival_time_1(j) - last_detection;

if dt > dead_time

last_detection = arrival_time_1(j);

photon_dead_1(j) = 0;

end

end

% final arrival times at channels 0 and 1 (picoseconds)

arrival_time_0 = arrival_time_0(photon_dead_0 == 0);

arrival_time_1 = arrival_time_1(photon_dead_1 == 0);

t_acquisition = max([arrival_time_0 arrival_time_1])*1e-12

count_rate = numel([arrival_time_0 arrival_time_1])/t_acquisition

end

Three-level emitter CW timestamps
To use the three-level CW timestamp model, insert the following script before the line

%%%... in the two-level code above. The new parameters are the shelving state lifetimes

t_shelf (τ23) and t_deshelf (τ31), both in picoseconds.

function [arrival_time_0,arrival_time_1] = simulate_ts_func(N,t_ex,t_rad,

t_shelf,t_deshelf,eta)

% generate random delays for each excitation (picoseconds)

delay_ex = exprnd(t_ex,1,N);

delay_rad = exprnd(t_rad,1,N);

delay_shelf = exprnd(t_shelf,1,N);

delay_deshelf = exprnd(t_deshelf,1,N);

% radiative cycle if t_rad < t_shelf i.e. photon emitted
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photon_emitted = zeros(1,N);

photon_emitted(delay_rad < delay_shelf) = 1;

% sum all delays for radiative and non-radiative cycles

delay_tot = zeros(1,N);

delay_tot(photon_emitted == 1) = delay_ex(photon_emitted == 1) +

delay_rad(photon_emitted == 1);

delay_tot(photon_emitted == 0) = delay_ex(photon_emitted == 0) +

delay_shelf(photon_emitted == 0) + delay_deshelf(photon_emitted == 0);

% emission cycles must be sequential: photon arrival times are the

% cumulative sum of total delays per excitation cycle

arrival_time = cumsum(delay_tot);

arrival_time = arrival_time(photon_emitted == 1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Three-level emitter pulsed timestamps
To use the three-level pulsed timestamp model, insert the following script before the line

%%%... in the two-level code above. The pulse repetition period is set inside the function

by t_rep, in picoseconds.

function [arrival_time_0,arrival_time_1] =

simulate_ts_pulse_func(N,t_ex,t_rad,t_shelf,t_deshelf,eta)

% lifetimes for each transition (picoseconds)

t_rep = 1e5;

% generate pulse arrival times

pulse_times = ones(1,N)*t_rep;

pulse_times = cumsum(pulse_times);

% generate random delays for each excitation

delay_ex = exprnd(t_ex,1,N);

delay_rad = exprnd(t_rad,1,N);

delay_shelf = exprnd(t_shelf,1,N);

delay_deshelf = exprnd(t_deshelf,1,N);

% radiative cycle if t_rad < t_shelf i.e. photon emitted

photon_emitted = zeros(1,N);

photon_emitted(delay_rad < delay_shelf) = 1;

% sum all delays for radiative and non-radiative cycles

delay_tot = zeros(1,N);

delay_tot(photon_emitted == 1) = delay_ex(photon_emitted == 1) +

delay_rad(photon_emitted == 1);

delay_tot(photon_emitted == 0) = delay_ex(photon_emitted == 0) +
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delay_shelf(photon_emitted == 0) + delay_deshelf(photon_emitted == 0);

% emission cycles must be sequential: photon arrival times are the

% cumulative sum of total delays per excitation cycle

arrival_time = pulse_times + delay_tot;

% remove any photons excited during the non-radiative decay of any previous

% cycle

index = find(photon_emitted);

window = 100;

for n = 1:window

if arrival_time(index(n)) < max(arrival_time(1:index(n)-1))

photon_emitted(index(n)) = 0;

end

end

for n = window+1:length(index)

if arrival_time(index(n)) < max(arrival_time(index(n)-window:index(n)-1))

photon_emitted(index(n)) = 0;

end

end

arrival_time = arrival_time(photon_emitted == 1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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