top of page

Recently, the project-coordinating FORTH team has introduced a new form of Chiral-Cavity-based Polarimetry (CCP) for chiral sensing (Sofikitis et al., Nature 514, 76; 2014), which has three groundbreaking advantages compared to commercial instruments: (a) The ORD and CD signals are enhanced by the number of cavity passes (typically ~1000); (b) otherwise limiting birefringent backgrounds are suppressed; (c) rapid signal reversals give absolute polarimetry measurements, not requiring sample removal for a null-sample measurement. Together, these advantages allow improvement in chiral detection sensitivity by 3-6 orders of magnitude.

The aim of ULTRACHIRAL is to revolutionize existing applications of chiral sensing, but also to instigate important new domains which require sensitivities beyond current limits, including: (1) measuring protein structure in-situ, in solution, at surfaces, and within cells and membranes, thus realizing the “holy-grail” of proteomics; (2) coupling to high performance liquid chromatography (HPLC) for chiral identification of the components of complex mixtures, creating new standards for the pharmaceutical, medical, and chemical analysis industries; (3) analysis of chirality in bodily fluids as a diagnostic tool in medicine, drug metabolism and pharmacokinetics; (4) the measurement of the chirality of single molecules, by adapting CCP to microresonators, which have already demonstrated single-molecule detection; and (5) real-time chiral monitoring of terpene emissions from individual trees and forests, as a probe of forest ecology.

bottom of page